
 
 

 

 

 

Al-Quds Open University 

Faculty of Graduate Studies and Scientific Research 

Master of Information Technology 

 

Comparative Analysis of IoT Protocols Efficiency for Smart City 

Scenarios: Performance Challenges 

لسيناريوهات المدينة الذكية: تحديات الأداء تحليل مقارن لكفاءة بروتوكولات إنترنت الأشياء  

THESIS 

 by 

Ahmad Awni Khalaf 

Student ID: 0330012110183 

 

Supervisor 

Dr. Eng. Samer Hosni Jaloudi 

Submitted in Partial Fulfillment of the Requirements 

For the Degree of Master of Information Technology at the Faculty of Graduate Studies 

Ramallah, Palestine 

© 2025 Ahmad Khalaf 



 
 

 

 

 

Al-Quds Open University 

Faculty of Graduate Studies and Scientific Research 

Master of Information Technology 

 

Comparative Analysis of IoT Protocols Efficiency for Smart City 

Scenarios: Performance Challenges 

لسيناريوهات المدينة الذكية: تحديات الأداء تحليل مقارن لكفاءة بروتوكولات إنترنت الأشياء  

 

THESIS 

 by 

Ahmad Awni Khalaf 

Student ID: 0330012110183 

 

Supervisor 

Dr. Eng. Samer Hosni Jaloudi 

Submitted in Partial Fulfillment of the Requirements 

 For the Degree of Master of Information Technology at the Faculty of Graduate Studies 

Ramallah, Palestine 

© 2025 Ahmad Khalaf



I 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2025 Ahmad Khalaf 



II 
 

Examination Committee Page 

The committee for 

 

Ahmad Awni Ahmad Khalaf 

certifies that this is the approved version of the following thesis and is acceptable in quality and 

form for publication in paper and digital formats: 

 

Comparative Analysis of IoT Protocols Efficiency for Smart City 

Scenarios: Performance Challenges 

Committee Members: 

Committee Supervisor: [insert name] 

Signature: _______________________________________________________ 

Date: ___________________________________________________________ 

Committee Co-Supervisor (if appropriate): [insert name] 

Signature: _______________________________________________________ 

Date: ___________________________________________________________ 

Committee First Member: [insert name] 

Signature: _______________________________________________________ 

Date: ___________________________________________________________ 

Committee Second Member: [insert name] 

Signature: _______________________________________________________ 

Date: ___________________________________________________________ 

Committee Third Member (if appropriate): [insert name] 

Signature: _______________________________________________________ 

Date: ___________________________________________________________ 

 

Al-Quds Open University 

2025 

 



III 
 

Declaration 

 

I, Ahmad Awni Khalaf, hereby declare that the work presented in this thesis has not been submitted 

for any other degree or professional qualification, and that it is the result of my independent work. 

 

 

 

 

 

 

Signed:  

 

Date: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IV 
 

Abstract 

Comparative Analysis of IoT Protocols Efficiency for Smart City Scenarios: 

Performance Challenges 

The Internet of Things has transformed modern life by changing how humans, systems, and 

devices interact with the physical world. The number of IoT devices is expected to increase from 

10 billion in 2020 to approximately 30 billion in 2030. With the increasing reliance on the Internet 

of Things (IoT) as a primary technology for developing smart cities, several technical challenges 

have emerged due to the heterogeneous and distributed nature of IoT networks. One of the most 

critical challenges lies in choosing an efficient communication protocol. It is a complex mission 

and needs more effort from the developers. Therefore, one of the primary objectives of this thesis 

is to examine the performance of application layer protocols for the Internet of Things in the 

context of smart city development. The research work in this thesis is organized into two parts: a 

theoretical part and a practical part. A detailed literature review was applied as a methodology in 

the theoretical phase of this study. The strengths and weaknesses of five existing IoT application 

layer protocols—HTTP, MQTT, CoAP, XMPP, and AMQP—in smart city IoT environments were 

evaluated, and a comparative performance analysis was conducted. The philosophy of each 

protocol has been addressed separately regarding its applicability in the smart city scenario. Based 

on the results obtained from the theoretical phase, MQTT emerges as an effective and ideal 

compromise protocol that balances the strengths and limitations of these protocols in terms of 

performance and efficiency; it combines lightweight and ease of use with an acceptable level of 

reliability and quality of service. Since the MQTT protocol has been suggested as the main 

communication protocol in IoT, the performance of this protocol was evaluated under various 

scenarios in the context of smart city applications, focusing on two primary scenarios: the 

transmission of small payloads and large payloads, each evaluated under varying QoS levels (0, 1, 

and 2). Using a Raspberry Pi as the publisher and Hive MQ as the broker, key performance metrics, 

including latency and message loss, were analyzed to assess protocol efficiency. Ultimately, the 

study emphasizes the importance of selecting an appropriate protocol tailored to the specific requirements 

of smart city applications, underscoring that no single solution is suitable for all IoT deployments. 

Additionally, the conclusions drawn from this extensive review revealed that various factors can impact a 

protocol evaluation. 

 

 

 

 

 

 

 



V 
 

 الخلاصة

 

 داءبروتوكولات إنترنت الأشياء لسيناريوهات المدينة الذكية: تحديات الأ مقارن لكفاءة تحليل 

 

جهزة مع العالم المادي. إنترنت الأشياء نقلة نوعية في الحياة العصرية من خلال تغيير كيفية تفاعل البشر والأنظمة والألقد أحدثت 

. 2030ي عام مليارًا ف 30إلى ما يقرب من  2020مليارات في عام  10ومن المتوقع أن يزداد عدد أجهزة إنترنت الأشياء من 

ديات التقنية بسبب كتكنولوجيا أساسية لتطوير المدن الذكية، ظهرت العديد من التح الأشياءومع الاعتماد المتزايد على إنترنت 

ل فعال. إنها مهمة الطبيعة غير المتجانسة والموزعة لشبكات إنترنت الأشياء. يكمن أحد أهم التحديات في اختيار بروتوكول اتصا

أداء بروتوكولات  الأهداف الرئيسية لهذه الرسالة هو التحقيق في معقدة وتتطلب المزيد من الجهد من المطورين. لذلك، فإن أحد

ذه الرسالة إلى جزأين: جزء نظري وجزء هطبقة التطبيق لإنترنت الأشياء في تطوير المدينة الذكية. يتم تنظيم العمل البحثي في 

ف لخمسة بروتوكولات تقييم نقاط القوة والضع عملي. تم تطبيق مراجعة الأدبيات كمنهجية في المرحلة النظرية من هذه الدراسة. تم

في بيئات إنترنت الأشياء  - AMQPو  XMPPو  CoAPو  MQTTو  HTTP -موجودة لطبقة تطبيقات إنترنت الأشياء 

يقه في سيناريو للمدن الذكية، وأجُري تحليل أداء مقارن. تمت معالجة فلسفة كل بروتوكول على حدة فيما يتعلق بإمكانية تطب

سط فعال ومثالي كبروتوكول حل و MQTTدينة الذكية. بناءً على النتائج التي تم الحصول عليها من المرحلة النظرية، يظهر الم

ة الاستخدام مع يوازن بين نقاط القوة والقيود لهذه البروتوكولات من حيث الأداء والكفاءة؛ فهو يجمع بين خفة الوزن وسهول

يسي في قد تم اقتراحه كبروتوكول الاتصال الرئ MQTTالخدمة. نظرًا لأن بروتوكول مستوى مقبول من الموثوقية وجودة 

ذكية، مع التركيز على إنترنت الأشياء، فقد تم تقييم أداء هذا البروتوكول في ظل سيناريوهات مختلفة في سياق تطبيقات المدينة ال

ة الخدمة يث تم تقييم كل منهما في ظل مستويات جودسيناريوهين رئيسيين: نقل الحمولات الصغيرة والحمولات الكبيرة، ح

ما في ذلك بكوسيط، تم تحليل مقاييس الأداء الرئيسية،  HiveMQكناشر و Raspberry Pi(. باستخدام 2و  1و  0المتفاوتة )

ل مُناسب مُصمم الدراسة على أهمية اختيار بروتوكو ركز، تُ وأخيراً  زمن الوصول وفقدان الرسائل، لتقييم كفاءة البروتوكول.

ات إنترنت الأشياء. خصيصًا لتلبية المتطلبات الخاصة بتطبيقات المدن الذكية، مُؤكدةً أنه لا يوجد حل واحد ينُاسب جميع تطبيق

ؤثر على تقييم تُ يمُكن أن  من هذه المراجعة المُوسعة عن وجود عوامل مُختلفة تخلصةإضافةً إلى ذلك، كشفت الاستنتاجات المُس

 البروتوكول.

 

 

 

 



VI 
 

Acknowledgements 

In the name of Allah, Most Gracious, Most Merciful 

This is my graduation thesis in the Master's Program in Information Technology at Quds Open 

University. 

First of all, I would like to express my sincere gratitude to my thesis supervisor, Dr. Eng. Samer 

Hosni Jaloudi, not only for graciously accepting to supervise my work but also for his continuous 

support, guidance, and invaluable advice throughout the completion of this thesis. He has provided 

me with motivation, guidance, and valuable suggestions for my thesis throughout my final year at 

QOU.  

I would also like to express my deep gratitude to all the professors who provided me with valuable 

insights on various topics along my master's journey, and for sharing their knowledge. Among the 

professors is Prof. Eng. Yousef S. Abuzir, Dr. Eng. Waleed Al-Salous, Dr. Eng. Samer Hosni 

Jaloudi, Dr. Mohamed Mahmoud Dweib, Dr. Eng. Nael Mohammed Abu Halaweh, and Dr. Thabit 

Suleiman Sabbah. Thanks to Al-Quds Open University for providing the students with the 

opportunity to participate in this master’s program. Also, my thanks to my parents, my wife, my 

family, and my friends for their endless support. 

 

 

 

 

Ahmad Khalaf 

Ramallah, Al-Quds Open University 

 May, 2025 

 

 



VII 
 

Dedication 

 

 

To my beloved parents, 

thank you for your love and support. 

To my dear wife, 

whose patience, love, and encouragement gave me strength at every step. 

To my son and daughters, 

you are my joy and my greatest motivation. 

This work is dedicated to you all, with all my heart. 

 

 

 

 

 

 

 

 

 

 

 

 



VIII 
 

Table of Contents 

Abstract ........................................................................................................................................................ IV 

 V ........................................................................................................................................................... الخلاصة

Acknowledgements ...................................................................................................................................... VI 

Table of Contents .................................................................................................................................. VIII 

List of Figures ................................................................................................................................................ X 

List of Tables ................................................................................................................................................ XI 

List of abbreviations .................................................................................................................................... XII 

Chapter 1: Introduction ................................................................................................................................ 1 

1.1 Overview and Background .................................................................................................................. 1 

1.2 Motivation ......................................................................................................................................... 10 

1.3 Problem statement ........................................................................................................................... 11 

1.4 Research Objectives .......................................................................................................................... 12 

1.5 Thesis Contribution to the Field ........................................................................................................ 12 

1.6 Structure of the thesis ...................................................................................................................... 13 

Chapter 2: Literature Review ...................................................................................................................... 14 

2.1 Introduction ...................................................................................................................................... 14 

2.2 Literature Review .............................................................................................................................. 14 

2.3 A summary of the research papers ................................................................................................... 22 

2.4 Discussion for literature review ........................................................................................................ 26 

Chapter 3: Methodology 1 .......................................................................................................................... 30 

Comparative study of main IoT protocols ................................................................................................... 30 

3.1 Introduction ...................................................................................................................................... 30 

3.2 Application-Layer Protocols Overview .............................................................................................. 30 

3.2.1 Hypertext Transfer Protocol (HTTP) ......................................................................................... 30 

3.2.2 Message Queuing Telemetry Transport (MQTT) ...................................................................... 33 

3.2.3 Constrained Application Protocol (CoAP) ................................................................................. 36 

3.2.4 Extensible Messaging and Presence Protocol (XMPP).............................................................. 38 

3.2.5 Advanced Message Queuing Protocol (AMQP) ........................................................................ 40 

3.3 Chapter discussion ............................................................................................................................ 41 

3.4 Conclusion of This Chapter ............................................................................................................... 44 

Chapter 4: Implementation and Experiments ............................................................................................ 46 

4.1 Chosen protocol ................................................................................................................................ 46 



IX 
 

4.2 Implementation of Smart City Scenario-Based MQTT Data Protocol ............................................... 47 

4.2.1 System Architecture Overview .................................................................................................. 47 

4.2.2 MQTT Publisher ........................................................................................................................ 49 

4.2.3 Broker (Public MQTT Broker) .................................................................................................. 49 

4.2.4 MQTT Subscriber ...................................................................................................................... 51 

4.2.5 Python and IoT ........................................................................................................................... 51 

4.2.6 Network configuration ............................................................................................................... 52 

4.2.7 Performance evaluation of IoT MQTT protocol ........................................................................ 53 

4.2.8 Analyze Packet Sizes ................................................................................................................. 54 

4.2.9 Experiments ............................................................................................................................... 54 

Chapter 5: Results and Discussions ............................................................................................................. 58 

5.1 Introduction ...................................................................................................................................... 58 

5.2 Results and Findings .......................................................................................................................... 58 

5.2.1 Latency findings for MQTT QoS 0 / QoS 1 / QoS 2 ................................................................. 59 

5.3 Discussion about the results ............................................................................................................. 64 

Chapter 6: Conclusion ................................................................................................................................. 67 

6.1 Future work ....................................................................................................................................... 68 

 

 

 

 

 

 

 

 

 

 

 



X 
 

List of Figures 

Figure 1.1: Overview of IoT 3-Layer architecture. (adapted from Yousuf, T et al., 2015) ............................ 2 

Figure 1.2: Major IoT components ................................................................................................................ 4 

Figure 1.3: Overview of IoT 7-Layer architecture (Cisco, 2014) .................................................................... 5 

Figure 1.4: IoT components relevant to smart cities. (adapted from Whaiduzzaman et al., 2022) ............. 6 

Figure 1.5. The number of devices that connected to IoT between 2019 and 2023. Number of devices 

expected to be connected to the Internet of Things by 2023 .................................................................... 10 

Figure 1.6 Protocols for IoT networks that are mapped to the TCP/IP model, adapted from (Gerber & 

Romeo, 2020) .............................................................................................................................................. 11 

Figure 3.1: HTTP Three-way handshake in opening a connection .............................................................. 31 

Figure 3.2: An example of an HTTP request and response message .......................................................... 32 

Figure 3.3:  basic request-response model of communication between a web browser and a server over 

HTTP. ........................................................................................................................................................... 33 

Figure 3.4: The message request-response in the MQTT protocol ............................................................ 33 

Figure 3.5: MQTT architecture. ................................................................................................................... 34 

Figure 3.6: MQTT Fixed Header Format. ..................................................................................................... 36 

Figure 3.7: IoT MQTT Message Format ....................................................................................................... 36 

Figure 3.8: CoAP architecture. .................................................................................................................... 38 

Figure 3.9: IoT CoAP Message Format adapted from (Becker, 2013). ........................................................ 38 

Figure 3.10: XMPP communication system architecture adapted from (Wang et al., 2017). .................... 39 

Figure 3.11: AMQP communication architecture ....................................................................................... 40 

Figure 4.1: Raspberry Pi 4 Computer Model B. ........................................................................................... 48 

Figure 4.2: The system architecture of IoT ................................................................................................. 48 

Figure 4.3:  Use PuTTY to Access the Raspberry Pi Terminal from a Computer ......................................... 52 

Figure 4.4:  Graph representing the Message exchange process in MQTT ................................................ 53 

Figure 5.1:  Plot latency vs. payload size with three levels of QoS. (4 Byte – 512 Byte) ............................ 59 

Figure 5.2:  Plot latency vs. payload size for each QoS level. (4 KByte – 512 Kbyte) .................................. 60 

Figure 5.3: MQTT Latency over cloud-based broker HiveMQ and Mosquitto ............................................ 62 

Figure 5.4: MQTT Packet loss measurements with three QoS analysis results .......................................... 64 
 

 

 

 

 

 

 

 



XI 
 

List of Tables 

 

Table 1.1: Challenges in implementing a smart city ..................................................................................... 8 

Table 1.2 Top ten smart cities, listed in the 2024 Smart City Index. (IMD School, 2024) .......................... 9 

Table 2.1: An overview of existing Papers on IoT application layer protocol. .......................................... 22 

Table 2.2: The three categories the literature review focuses on ................................................................ 29 

Table 3.1: Characteristics of application layer protocols MQTT, CoAP, XMPP, AMQP, and HTTP ....... 41 

Table 4.1: A List of Popular MQTT Brokers .............................................................................................. 50 

Table 4.2: Packets in Bytes with three levels of QoS for Small Payload. .................................................. 55 

Table 4.3:  Packets in Bytes with three levels of QoS for large Payload. ................................................... 55 

Table 4.4: Features of test platform. ........................................................................................................... 56 

Table 4.5: Features of test platform. ........................................................................................................... 57 

Table 5.1: MQTT Latency (ms)for small payload ...................................................................................... 59 

Table 5.2: MQTT Latency (ms)for large payload ....................................................................................... 60 

Table 5.3: MQTT Latency (ms) of cloud-based broker HiveMQ and Mosquitto ....................................... 61 

Table 5.4: Results of MQTT packet loss vs payload for QoS 0 ................................................................. 63 

Table 5.5: Results of MQTT packet loss vs payload for QoS 1 ................................................................. 63 

Table 5.6: Results of MQTT packet loss vs payload for QoS 2 ................................................................. 63 

Table 5.7: effect of payload size vs QoS ON Latency for MQTT .............................................................. 65 
 

 

 

 

 

 

 

 

 

 

 

 



XII 
 

List of abbreviations 

 

ACK Acknowledgement 

AMQP Advanced Message Queuing Protocol 

BLE Bluetooth Low Energy 

CoAP Constrained Applications Protocol 

DDS Data Distribution Service 

HTTP Hypertext Transfer Protocol 

HTTPS Hypertext Transfer Protocol Secure  

IoT Internet of Things 

JSON JavaScript Object Notation 

LTE Long-Term Evolution 

MQTT Message Queuing Telemetry Transport 

ms Millisecond 

QoS Quality of service 

REST Representational State Transfer 

RTT Round-trip time 

TCP/IP Transmission Control Protocol/Internet Protocol  

UDP User Datagram Protocol 

URL Uniform Resource Locator  

WiFi Wireless fidelity  

XML Extensible Markup Language 

XMPP Extensible Messaging and Presence Protocol 

WSN Wireless Sensor Network 

 

 

 

 



1 
 

Chapter 1: Introduction 
 

This chapter aims to provide an overview and background of the thesis, including the motivation, 

problem statement, research objectives, the importance of the study, and the contributions made 

to the field. The concept of IoT, IoT architecture, and core components are presented. 

1.1 Overview and Background  

The Internet of Things is a network of devices that can communicate with each other through 

different protocols. Things include devices and gadgets, or maybe appliances such as lights, 

headphones, cell phones, fridges, thermostats, cameras, and even people who have implanted heart 

monitors. The IoT has many definitions in the field of science. The International 

Telecommunication Union’s (ITU) definition states that the IoT is "a global infrastructure for the 

information society, enabling advanced services by interconnecting things based on existing and 

evolving interoperable information and communication technologies." (ITU, 2022). It is a global 

network of physical objects with computing capabilities that collect data and transfer it to more 

powerful computing back-ends via communication protocols and standards. It converts everything 

around us into a smart object. These objects have electronics, sensors, and actuators built in, as 

well as software and network connectivity that let people interact with them directly. 

One of the main objectives of IoT is to be 100% connected to create a smart world. That's why the 

transformation happens quickly; this transformation will occur in the future and will contribute to 

the development of several fields, such as AI integration, edge computing, cybersecurity 

prioritization, decentralized energy systems, a smarter urban landscape, citizen-centric solutions, 

and the 5G revolution. IoT is one of the popular concepts at this time in wireless communications.  

The advantages of IoT can be employed in a wide range of areas, including the public and business 

sectors, and it has been proposed for many applications, including smart cities, consumer devices, 

industrial environments, the IoVT, 5G communications, and multimedia systems. 5G technology 

will be an important player in the development of smart cities. Wireless connectivity for smart 

sensing devices will be quick and safe through twinning between the Internet of Things and 5G 

technologies. IoT architecture defines the integrated framework of components, devices, 

technologies, and cloud services used to build and manage IoT systems.  



2 
 

It is a framework that outlines the structure and organization of the components used to build IoT 

solutions. It guarantees efficient communication and interoperability between the different devices 

and objects. IoT architecture typically consists of several layers, each with a unique objective in 

the overall functionality of the system. The Network IoT Architecture Perspective is focused on 

establishing network communication between devices or things. The main challenge is finding an 

IoT platform that matches the suitable application. (Guth et al., 2016). Due to their heterogeneous 

nature, IoT networks utilize different communication technologies, such as Wi-Fi, wireless sensor 

Networks, Wireless Mesh Networks, vehicular Networks, and mobile networks from 3G to 5G 

(Kanellopoulos et al., 2023). 

The very first IoT architecture was a three-layer architecture. Figure 1.1 illustrates three-layer 

model architectures for IoT systems; it is composed of a perception layer as a base layer, which 

includes sensors and actuators, and a network layer. It is also known as the transmission layer. It 

acts as a bridge between the perception and application layers, which mainly realizes the 

transmission of information, routing, and control. The third layer is the application layer and the 

information processing layer, which enable user interaction. It uses cloud computing, cloud 

storage, and cloud analysis to integrate and monitor the data. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Overview of IoT 3-Layer architecture. (adapted from Yousuf, T et al., 2015) 



3 
 

After that, it was extended by integrating a business layer to complete the four-layer model. There 

are also five-layer architectures, namely the perception layer, network layer, processing layer, 

application layer, and business layer. The basic building blocks of an IoT system are its 

components, which collaborate to create systems and accomplish a variety of objectives. Each IoT 

component provides a function within the system in order to accomplish its objective. The data 

flow between IoT components may be bidirectional; some may only transmit data, while others 

may only receive data. 

According to a research article (Raj & Shetty, 2021), the fundamental parts of an IoT ecosystem 

are the user interface, data processing, actuators, gateway, and sensors. (Paolone et al., 2022) 

proposed a definition of an IoT ecosystem as “an IoT ecosystem connects resource-constrained 

heterogeneous devices in a handled way to build an efficient and secure system, whose final aim 

is to deliver services of practical utility to a community comprising a multitude of stakeholders." 

In the study of (Bansal & Kumar, 2020), for example, it is stated that an IoT ecosystem combines 

heterogeneous components in a controlled way to create an efficient and secure system. 

The IoT architecture mainly consists of the following five components, as shown in Figure 1.2 

Smart devices and sensors that collect information from their surroundings and send it to the next 

layer which is the gateway that control the traffic between different networks, provide a certain 

amount of security and transfer data that comes from the sensors or is sent to the actuators, and 

make sure of the interoperability of the connected devices and sensors. The third one is the cloud, 

which provides the means and resources to gather, process, and store massive amounts of data. 

Analytics is the process of converting analog data from billions of smart devices and sensors into 

meaningful information that can be interpreted and applied to various types of analysis. The user 

interface is the fifth component; it serves as the visible part of the IoT system through which users 

can access, control, and collect information. 

 

 



4 
 

 

 

 

 

 

 

Figure 1.2: Major IoT components 

The recent proposal for the IoT architecture is delivered by Cisco as a seven-layer architecture 

(Marcela et al., 2020). As depicted in Figure 1.3, Layer 1 represents things, physical devices, 

including cameras, actuators, sensors, and other devices that collect data from the physical world 

around us. Layer 2 focuses on communication and connectivity, for example, transferring data to 

cloud data centers from devices like sensors. The activities for Edge computing in layer 3 focus 

on converting network data into information suitable for higher-level processing and storage that 

is convenient for level 4 (storage and higher processing). The function of level 4 is to guarantee 

that the data is moving precisely. After the data accumulation is necessary to render the data and 

store this information in a way that facilitates the development of the application more simply and 

with higher performance. This is performed at layer 5. The application level is Layer 6, where all 

the data generated is interpreted using various types of applications. This includes the dashboards 

that display configuration, status, and other information about the device. Layer 7 (Collaboration 

and Processes), which is the highest level, pulls everything together. 

The Internet of Things (IoT) and smart cities are on a path that will contribute to more connected, 

efficient, and sustainable urban environments in the future. The Internet of Things has a variety of 

applications within smart cities, such as smart buildings, smart lighting, smart water networks, 

smart grids, waste management using smart garbage containers, and healthcare, which can monitor 

health metrics such as heart rate and blood sugar levels. 



5 
 

 

 

Figure 1.3: Overview of IoT 7-Layer architecture (Cisco, 2014) 

Dameri introduces the definition of smart cities as:” A smart city is a well-defined geographical 

area in which high technologies such as ICT, logistics, energy production, and so on, cooperate to 

create benefits for citizens in terms of well-being, inclusion and participation, environmental 

quality, and intelligent development; it is governed by a well-defined pool of subjects, able to state 

the rules and policies for the city government and development” (Dameri, 2013). In the context of 

smart cities, the Internet of Things (IoT) offers hundreds of features, tools, and applications that 

significantly enhance the quality of life for residents.  Figure 1.4 shows IoT components relevant 

to smart cities. 

The number of urban residents is constantly growing, and due to the increasing urban population 

and the depletion of conventional resources, a rapid increase in demand for smart city initiatives. 

The smart city concept serves as an effective tool for addressing contemporary urban challenges. 

However, there are obstacles in the way of becoming a smart city, and overcoming them will 

demand continuous effort. 



6 
 

 

Figure 1.4: IoT components relevant to smart cities. (adapted from Whaiduzzaman et al., 2022) 

There are several challenges facing the framework and infrastructure of the smart city that demand 

increased efforts from developers, scientists, and research institutes to provide answers and 

develop effective solutions. 

The authors of (Bellini et al., 2022) state that there are interoperability problems due to smart cities 

have a wide range of IoT systems and devices from different suppliers and a wide number of IoT 

protocols, formats, and frameworks. This aspect is enhanced by the fact that many smart city 

applications have been initially developed as vertical silos, with each of them using its own 

solutions for data ingestion and storage. Interoperability challenges arise when these devices need 

to communicate and share data. Smart city communication networks are expanding in both size 

and complexity; this will not support interoperability between IoT nodes and clients. Therefore, 

there is no doubt that interoperability is one of the biggest challenges in IoT. Hence, a successful 



7 
 

smart city should have effective measures to enrich interoperability amongst the existing single 

systems while conserving their operational independence (Al Mansoori, 2021). 

Cybersecurity challenges are also important issues that government authorities and IT 

professionals consider to make real-time data secure and resilient against various forms of assault. 

Smart cities handle sensitive data related to citizens, infrastructure, and services. IoT protocols 

must be designed to address critical security and privacy concerns effectively; this includes secure 

authentication and authorization mechanisms, data encryption, secure firmware updates, and 

protection against various cyber threats. Encryption, confidentiality mechanisms, and access 

control measures can protect user privacy during data transfer.  

One IoT platform can be used to collect and analyze all the data in the system; this could expose 

the system to many kinds of risks and vulnerabilities. Balancing security measures with efficient 

communication is essential to maintain optimal performance. There is always a risk that the huge 

amount of data being collected and communicated over the Internet of Things might end up in the 

hands of some misguided individuals. (Ilyas, 2023). One of the important performance challenges 

faced by IoT protocols in smart city environments is scalability; smart cities comprise a huge 

number of interconnected systems and devices that generate and consume massive amounts of 

data. IoT protocols must be able to meet the scalability requirements of smart city 

implementations. Guaranteeing effective communication between devices and the central 

infrastructure, enabling many thousands of devices, and managing growing data traffic.  

Smart city applications, such as real-time monitoring, require low-latency communication. IoT 

protocols must minimize latency within the infrastructure and between devices to ensure smooth 

data exchange. Consistent network availability is another major requirement in the smart 

environment of the city to gather data and information from sensors and process them at high speed 

on the internet.  

The massive data volumes generated by smart city networks raise QoS challenges. QoS sensitivity 

affects many smart city services and applications, including healthcare and intelligent grids. 

Enhancing power management for IoT devices and communication infrastructure in smart cities 

remains a challenge. The power consumption of these devices should be minimized. So many 

smart devices have low power consumption because they are battery-powered. 



8 
 

Another major issue is the government's lack of funds. An additional challenge in maintaining the 

smart city infrastructure is the shortage of skilled professionals. For communication protocols to 

support the connectivity of things and the wireless network, they must be low-latency, high data 

rate, scalable, high bandwidth, and long-range.  

Table 1.1 outlines the key challenges commonly identified in the smart city domain, compiled and 

synthesized from a comprehensive review of relevant literature sources, including those indexed 

in Google Scholar, IEEE Xplore, Springer, MDPI, and the ACM Digital Library. 

 

Table 1.1: Challenges in implementing a smart city 

# Challenges 

1 Interoperability issues 

2 Cybersecurity Issues and Data Privacy 

3 Big data, large volume of data, data management 

4 Cost, implementation challenges 

5 High-power consumption 

6 Operations and maintenance cost challenges 

7 Low-latency tolerance 

8 Affordability and scalability 

9 Quality of service 

10 Government funding - the government's insufficient  

 

 

IMD publishes a yearly Smart City Index that combines economic and technological aspects of 

smart cities with "humane aspects" (quality of life and environment). The evaluation ranking of 

the city depends on several factors and structures such as safety, mobility, opportunities (Work & 

School), governance, affordable housing, road congestion, air pollution security, green spaces, 

health services, public transport, recycling, citizen engagement, basic amenities (water & waste), 

transparency, and school education. Table 1.2 presents the top ten smart cities listed in the 2024 

Smart City Index. 



9 
 

 

Table 1.2 Top ten smart cities, listed in the 2024 Smart City Index. (IMD School, 2024) 

# Smart City 

1 Zurich, Switzerland. 

2 Oslo, Norway. 

3 Canberra, Australia. 

4 Geneva, Switzerland. 

5 Singapore 

6 Copenhagen, Denmark. 

7 Lausanne, Switzerland. 

8 London, England. 

9 Helsinki, Finland. 

10 Abu Dhabi, UAE. 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

1.2 Motivation 

The way humans interact with their surroundings has been changed by the Internet of Things (IoT). 

The extraordinary increase in the number of internet-connected devices over the past two decades 

has attracted significant interest from engineers and academics in the field of the IoT (Schiller et 

al., 2022). According to Statista, the number of IoT devices is expected to increase from 10 billion 

in 2020 to approximately 30 billion in 2030, as shown in Figure 1.5. (Statista, 2023).  

 

 

 

 

 

 

 

 

 

 

Figure 1.5. The number of devices that connected to IoT between 2019 and 2023. Number of 

devices expected to be connected to the Internet of Things by 2023 

A primary goal of the Internet of Things (IoT) is to connect the physical and digital worlds. The 

IoT ecosystem is naturally diverse, comprising devices from many vendors and manufacturers 

with different hardware platforms, communication protocols, and data formats. This diversity 

creates challenges in achieving seamless interoperability and efficient device communication (Qiu 

et al., 2018), making it difficult to develop a universal standard that works for all devices. The 

variety of protocols and standards results in heterogeneity across IoT systems, which can occur 

from the design phase to choosing the right solution. Smart cities have attracted researchers' 

interest for the past twenty years. Using new technologies like IoT could help make smart cities 



11 
 

more sustainable, efficient, and intelligent. This work aims to deepen the understanding of IoT 

protocols that can be used in smart city applications. The main concern for smart city developers 

and designers is which protocols will facilitate data exchange between nodes. So, the question 

remains: why should users choose one protocol over another?  

1.3 Problem statement 

Several IoT communication protocols are used to facilitate message exchanges between devices 

in IoT systems. Many messaging protocols have been developed to enable efficient communication 

within the IoT ecosystem, including HTTP, XMPP, MQTT, MQTT-SN, CoAP, AMQP, DDS, 

Matter, and WebSocket. 

This thesis offers a comparative analysis of IoT messaging protocols, focusing on key features and 

insights from existing literature. Its main goal is to identify commonly used IoT communication 

protocols suitable for smart city development and to assess their performance. Figure 1.6 presents 

how IoT network protocols map onto the TCP/IP model. Therefore, understanding the 

characteristics and appropriateness of these protocols is crucial for choosing the best one for 

specific application scenarios. The protocols examined in this work are HTTP, MQTT, CoAP, 

AMQP, and XMPP. 

 

 

 

 

 

 

 

Figure 1.6 Protocols for IoT networks that are mapped to the TCP/IP model, adapted from 

(Gerber & Romeo, 2020) 



12 
 

1.4 Research Objectives 

The primary goal is evaluating the efficiency of current IoT application layer protocols for smart 

city scenarios from a technological and scientific perspective and providing a better understanding 

of the answers to the following questions from the viewpoint of the developers of the IoT system, 

which are: 'What messaging protocols shall be used in the implementation of the IoT system in 

smart cities?' What are the differences in performance between one protocol and another?  The 

protocols that have been the focus of this work are HTTP, MQTT, CoAP, AMQP, and XMPP. 

Furthermore, this study aims to achieve these secondary objectives that address the specific needs 

related to IoT protocols and standards for smart cities: 

 Investigate publications and institutions' websites for available IoT protocols and standards 

for smart city applications. 

 Study of Internet-based protocols and emerging technologies for smart city applications. 

 Comparison between available IoT protocols and standards for the smart city. 

 Propose an Internet-based telecommunications protocol for general-purpose smart city 

applications. 

 Comparison between the proposed IoT protocol and classic Internet protocols. 

1.5 Thesis Contribution to the Field 

This thesis investigates an important scientific contribution to the field of Internet of Things (IoT) 

protocols by examining their application in smart city environments. It aims to support researchers 

and developers working on building IoT systems within smart city services and to expand 

understanding of recent technologies related to the Internet of Things and smart city concepts. 

The study presents a detailed comparative analysis of the five main IoT application layer protocols, 

including MQTT, HTTP, CoAP, AMQP, and XMPP, evaluated from a theoretical perspective. It 

provides researchers and engineers with a comprehensive understanding of application-layer 

protocols in terms of their performance. The analysis highlights their design philosophies, 

messaging models, and suitability for smart city applications with varying performance 

requirements. The thesis results can be used to help choose a messaging protocol and electronic 



13 
 

platform and evaluate their performance. This motivated me to investigate the domain of IoT 

protocols more deeply. I aimed to identify the main challenges associated with IoT messaging 

protocols and their relationship to classical Internet protocols, examine the technical mechanisms 

involved behind the scenes, and propose solutions for academic and industry professionals. 

1.6 Structure of the thesis  

 

Chapter 1: This thesis begins with an introduction that outlines key concepts related to the Internet 

of Things (IoT), explains the motivation behind the study, defines the research objectives, and 

identifies the central problem to be addressed. 

Chapter 2 contains the literature review.  

Chapter 3 describes the proposed methodology and research design of the thesis, making a clear 

comparison between the protocols. 

Chapter 4 describes the testbed that has been implemented and how the research method was 

applied, introducing both hardware setup and software setup for the experiments to evaluate the 

performance of the application layer protocols presented. 

Chapter 5 reflects the experimental results of the tests and measurements that are demonstrated 

using diagrams and tables.  

Chapter 6 presents the conclusion of the study and offers recommendations for future research. 

 

 

 

 

 

 

 

 

 



14 
 

Chapter 2: Literature Review 
 

2.1 Introduction 

 

The IoT is a challenging topic in both academia and industry. Nowadays, researchers have been 

concentrating a lot on IoT and have proposed multiple solutions. Since its appearance and the 

beginning of its development, IoT protocol performance has been studied from several levels. 

A more comprehensive and deeper understanding of the subject is aimed to be provided. This 

chapter provides an overview and summary of the recent works related to this thesis topic, which 

has been widely researched in the last few years. 

2.2 Literature Review 

Application layer protocols for the IoT were investigated in (Mijovic et al., 2016). The 

performance of three application layer protocols was compared, including MQTT, CoAP, and 

WebSocket. These protocols have been implemented on the same hardware platform. The 

experiment evaluated the overhead and average round-trip time (RTT). Two different 

implementations have been considered. The first is a local area network (LAN) configuration, and 

the second is a more realistic IoT configuration, where the AP was connected to a remote server 

via the Internet. For the IoT configuration, two types of Internet connections are established: one 

using a home router and the second using a cellular network. From the results of their work, MQTT 

performance depends on the quality of service (QoS), and the CoAP protocol gained an excellent 

protocol efficiency and the lowest average RTT. Their study is relevant to this thesis as it involves 

a comparison of IoT protocols. While they employed an experimental approach to measure round-

trip time (RTT) and overhead, our study focuses on calculating network latency. 

(Bani Yassein et al., 2016) reviewed seven IoT application layer protocols, including XMPP, 

MQTT, CoAP, RESTFUL, DDS, AMQP, and WebSocket, in terms of architecture design, 

communication model, security, and QoS. They also reviewed the strengths and weaknesses of 

each protocol. In their study, they presented an extensive comparison of existing protocols and 

demonstrated that the selection of an appropriate application-layer protocol depends on various 

factors, including device capabilities, application requirements, and environmental conditions. 



15 
 

According to (Hantrakul et al., 2017), the study proposed a parking Lot software based on the 

MQTT protocol for data communication between devices. The proposed software can share real-

time parking Lot information with any driver via a mobile phone. The experimental results indicate 

that HTTP consumes significantly more power than MQTT in dynamic data communication 

scenarios. Specifically, HTTP was found to use approximately ten times more power than MQTT. 

Moreover, during one hour of operation, MQTT successfully sent ten times more messages than 

HTTP." 

Kayal, Paridhika, and Perros (2017) utilized a smart parking testbed to evaluate and compare the 

performance of CoAP, MQTT, XMPP, and WebSocket protocols. A smart parking application 

was implemented to compare the response time for different loads. The findings have shown that 

CoAP outperforms the other message queue-based protocols at lower server utilization. On the 

other hand, when considering that the program has the CPU power to support multithreading, 

WebSocket performs better than the other three protocols. XMPP performs better when the 

program supports multi-threading in order to minimize server utilization. Except for WebSocket, 

which shows the opposite tendency, the mean response time of all protocols increases as server 

occupancy increases. 

A detailed examination of the four popular IoT protocols, HTTP, AMQP, CoAP, and MQTT, was 

presented by Naik (2017). Through a comparative analysis, his work summarizes the features of 

various protocols and provides insight into the strengths and limitations of these IoT protocols. 

Through the use of static components and empirical information from the literature, the author 

presents a comprehensive and comparative view of messaging protocols, enabling the end-user to 

make an informed decision about which protocol best suits their needs. 

 

The study of (Khalil et al., 2018) investigated the general features of three protocols: CoAP, 

MQTT, and UPnP, to provide a subjective comparison from different perspectives. The authors 

also conducted performance analysis for the three protocols in terms of memory footprint, CPU 

footprint, latency, both upstream and downstream traffic, and power consumption. Although all 

three protocols have their respective advantages and disadvantages, the analytical evaluation 

indicates that CoAP outperforms both MQTT and UPnP in terms of performance. However, this 



16 
 

comes at the cost of higher memory consumption. CoAP is also expected to become the de facto 

standard for resource discovery in IoT environments. 

The authors in (Wukkadada et al., 2018) examined two application layer protocols; the first one is 

MQTT, and the other one is HTTP. They conducted experiments on the two protocols. The 

results show that MQTT packets have a 100% delivery rate and use less power. 

The study by (Hofer & Pawaskar, 2018) analyzes two commonly used communication approaches 

in IoT environments. The benchmark compares the protocol MQTT against the RESTful approach, 

which is based on HTTP(s), in terms of energy consumption and performance. The results of this 

paper highlight that MQTT has strong advantages compared to REST due to the fact that these 

application layer protocols were specialized for IoT communication, while HTTP was extended to 

address new requirements. The proportion of data to overhead is better in MQTT, and the 

throughput is up to 3.85 times higher compared to REST. In addition, the QoS of MQTT can 

handle the reliability of the transmission in areas where the connection quality is poor. 

The author of (Jaloudi, 2019) discussed the MQTT protocol used for event-based message 

communication in smart cities. His work focused on the evaluation of the MQTT protocol for IoT-

based smart city applications. A network topology is developed that uses Wi-Fi as a 

communication infrastructure and is based on MQTT over TCP/IP. The "Raspberry Pi 3" platform 

is proposed as the MQTT server (broker). The inexpensive Wi-Fi module, which is an ESP8266, 

is used as one of the IoT-enabling and vital technologies. The module is a microcontroller-based 

system. In his study, the researcher implemented a protocol for completing practical scenarios at 

different levels of communication infrastructures, including sensor level, hub level, client level, 

and server level. In the proposed network model, JSON is used for formatting user data, and MQTT 

is used as a transfer protocol for packets. Based on the simulations conducted in the paper, the 

author concluded that the MQTT protocol is well-suited for small to medium-sized businesses 

utilizing IoT-based applications that communicate with online MQTT servers, as well as for 

medium to large-scale IoT applications that exchange messages through local MQTT servers. For 

the paper, some online servers (brokers) were tested, including the HiveMQ online testing server 

broker.hivemq.com, the Mosquito-based web server, which is available online as well on 

test.mosquitto.org, the test server introduced by Eclipse iot.eclipse.org, and the Moquette 



17 
 

broker.moquette.io. The ping command is used to ping the hostname test.mosquitto.org, and the 

results show that the server broker HiveMQ has the lowest latency among them. From these results, 

it is concluded that the measurements do not depend only on the network latency but also on the 

server itself. 

The contributors in (Marques et al., 2018) have proposed an architecture that contains a multilevel 

IoT-based smart city management system. They used a waste management problem as a use case 

to evaluate the performance of the proposed solution. In these scenarios, CoAP, HTTPS, and 

MQTT were used as IoT protocols to provide secure communication for the architecture 

implementation. The metrics used in the evaluation were energy consumption, latency, jitter, and 

throughput with different QoS. Results from MQTT were the best. Additionally, CoAP did very 

well. To optimize power consumption, the use of sleep mode is recommended. 

The paper (Bansal & Kumar, 2019) begins by giving a practical overview of the concept of the 

Internet of Things, its layers, and components of IoT. The study also highlighted the challenges 

associated with smart cities, and then a comprehensive evaluation of application protocols MQTT, 

CoAP, and DDS is presented, and the utilization of these protocols in smart city applications is 

explained. The three metrics worked on were latency, bandwidth, and packet loss. Contiki software 

is used to analyze the performance of selected protocols. At low bandwidth, the MQTT protocol 

has a higher latency; as bandwidth increases, latency decreases, and the bandwidth used also 

decreases with increased packet loss. DDS has lower latency, but DDS consumes more bandwidth. 

The research paper of (Sultana & Dumitrescu, 2019) evaluated commonly used application layer 

protocols using an IoVT (Internet of Video Things) framework for next-generation video 

surveillance systems. A real-time surveillance test application was implemented, and the 

communication protocols' performance was tested for parameters that affect these protocols, such 

as latency, throughput, bandwidth, overhead, memory usage, CPU usage, and energy consumption. 

The protocols for different video surveillance scenarios were ranked. The results demonstrate that 

the MQTT protocol can be applied and used to implement IoVT-based real-time video surveillance 

applications in a constrained environment. MQTT can transmit visual data from an IoVT edge 

node, as it uses less bandwidth and has suitable application latency. The large overhead and 

bandwidth consumption make the HTTP protocol inappropriate as an IoVT edge node protocol in 



18 
 

a constrained environment, although it is the most widely used and adapted for different 

applications. HTTP was proposed by the author as an appropriate method for communication 

between a resourceful fog and an unconstrained cloud in an IoVT video surveillance case. For the 

CoAP protocol, a significant delay in large visual data being transmitted makes it inappropriate 

for an IoVT edge node." Due to its high overhead and latency in data transfer, XMPP is also not 

suitable for implementation in IoVT-edge nodes. 

In (Zorkany et al., 2019), the study presented an e-health system, which is an automatic wireless 

health monitoring system used to measure patient parameters and utilizing Internet of Things 

technologies based on MQTT and CoAP protocols with embedded system technology. Based on 

these practical and simulation results, in terms of latency and the number of messages lost, the 

MQTT protocol provided better results than the CoAP protocol. The MQTT messaging protocol 

is well-suited for the design and implementation of an e-health platform within an IoT 

environment. 

Smart grid systems benefit from IoT applications, which motivated the work in (Šikić et al., 2020). 

Three popular protocols, which are HTTP, MQTT, and AMQP, have been utilized to investigate 

the message performance in a smart grid integrated with IoT. The findings of the experiment 

demonstrate that the MQTT protocol is appropriate for all IoT-based smart grid use cases since it 

achieves the lowest message delivery time and the least amount of message overhead. 

CoAP and MQTT protocols have been studied in (Kassem & Sleit, 2020). To assess performance, 

elapsed time is investigated. The work evaluated the impact of different simulation configurations 

on ECG signal processing, which was conducted in three different experiments. As the number of 

connected sensors increases, CoAP performs better. The results of the analysis help determine 

which of the IoT application protocols is used for ECG devices specifically and e-health and IoT 

devices in general. 

(Seoane et al., 2021) have studied the performance of CoAP and MQTT, both the insecure and the 

secure versions, under different network conditions using a simple network scenario, contrasting 

in some simple situations with data obtained from an analytical model. The main conclusions of 

their study are that the MQTT protocol is more bandwidth demanding as it adds TCP overhead. 

On the other hand, it offers different QoS and implicitly offers reliability (for running over TCP), 



19 
 

while CoAP offers a simple QoS and reliability mechanism through confirmable or non-

confirmable messages. They also concluded that securing the communications through DTLS 

(CoAP) or TLS (MQTT) adds an important increase of the bandwidth usage – more than 1000% 

in CoAP and between 74 and just over 200% in MQTT – and the CPU usage – about 3.5% for 

PSK and 11.5% for PKI in CoAP and about 27% for PSK and 36% for PKI in MQTT – taking into 

account the modes of operation and QoS.  

(Kumar & Jamwal, 2021) analyzed the protocols MQTT, XMPP, CoAP, CASTOR, AMQP, and 

LIDOR. These protocols have been studied and compared based on 6 parameters. The 6 parameters 

are communication overhead, security, packet loss, throughput, bandwidth, and support for QoS. 

To enhance clarity, the characteristics of each protocol are also outlined. By comparing these 

features, the differences between the protocols become evident, allowing the identification of the 

most efficient one based on the evaluated parameters. As a result, LIDOR was found to be the 

most effective communication protocol among those considered 

It has been seen that LIDOR has an end-to-end feedback mechanism. The feedback mechanism 

helps LIDOR to reduce the overall communication overhead of the protocol. LIDOR enhances 

authenticity under DoS attacks by approximately 91%. Compared to CASTOR, LIDOR reduces 

network overhead by 32% and operates with low bandwidth requirements. It also provides strong 

support for Quality of Service (QoS). However, its main limitation is that it does not respond to 

packets that are lost once. 

The work of (Silva et al., 2021) focuses on evaluating three of the most popular protocols used 

both in Consumer as well as in IoT environments for industrial applications. These protocols are 

MQTT, CoAP, and OPC UA. First, a local testbed for MQTT, COAP, and OPC UA has been 

carried out for experimentation. Then, larger experiments have now been carried out for MQTT 

and CoAP, based on the large-scale FIT-IoT testbed. Results show that OPC UA produced a higher 

time-to-completion compared to CoAP or MQTT. CoAP is the protocol with the lowest time-to-

completion across all scenarios. 

(Palmese et al., 2021) present a performance evaluation of two protocols: MQTT-SN, the version 

of MQTT for sensor networks, and CoAP in its Pub/Sub version. Both protocols are Pub/Sub in 



20 
 

nature and based on UDP; therefore, they allow a fair comparison of their functionalities. The 

authors proposed an open-source implementation of the CoAP Publish/Subscribe model and 

compared it to MQTT-SN from both theoretical and practical perspectives within a simulated 

environment characterized by a varying number of clients and network conditions. The results 

indicate that CoAP is a viable alternative to MQTT-SN in publish-subscribe environments, and 

the authors suggest that CoAP is particularly well-suited for highly dynamic networks. 

(Bayılmış et al., 2022) provide an overall review of IoT application layer communication protocols 

and challenges. They also discuss various technical issues to identify suitable IoT communication 

protocols, including REST, MQTT, CoAP, XMPP, DDS, AMQP, and WebSocket. The paper 

evaluates a range of relevant metrics, including the transmission model, message formats, security 

mechanisms, and QoS support. However, most IoT communication protocols, such as MQTT, 

CoAP, and WebSocket, have only been tested in limited environments, and their effectiveness in 

representative IoT scenarios has yet to be fully validated. The available results provide valuable 

insights to guide developers in selecting appropriate protocols. 

When analyzing the experiment results, the CoAP protocol generally offers the best performance 

compared to other protocols. The results indicate that CoAP is suitable for IoT applications that 

require a high traffic load with low energy consumption and no demand for a handshake procedure. 

The main advantage of the MQTT protocol is its ability to efficiently transmit messages to multiple 

subscribers within the publisher/subscriber model. Therefore, the MQTT protocol may be 

preferred by IoT applications that require a secure communication environment and send messages 

to multiple subscribers at the same time. WebSocket is a good choice for IoT applications that 

desire high data rates. The paper also describes some challenges related to communication 

protocols for IoT applications and discusses some trends in different applications for IoT.  

The project of (Tsvetanov & Pandurski, 2022) performs a real experiment on the XBee sensor 

network and the ThingSpeak cloud. HTTP, HTTPS, MQTT, and MQTT-SN protocols were used 

for transmitting the data packets between the sensor network and the cloud. The impact of the 

parameters of the transmitted packet on the latency has been studied. The results show that MQTT 

has various advantages over other protocols in terms of data throughput, CPU and RAM load, and 

integration between cloud structures and WSN sensor modules.  



21 
 

(Nwankwo et al. 2024) proposed an integration of the MQTT-CoAP protocol using an abstraction 

layer that enables both the MQTT-SN and CoAP protocols to be used in the same sensor node. 

Resources are managed by directly modifying the sensor node configuration using the CoAP 

protocol. Performance evaluation of these protocols under the integrated scenario shows 

acceptable levels of latency and energy consumption for Internet of Things (IoT) operations. The 

integration of the two protocols on a constrained device does not harm the system. The abstraction 

layer enables the simultaneous use of both MQTT-SN and CoAP protocols on resource-

constrained IoT devices. 

The paper by (Patti et al., 2024) proposes an IIoT-enabled version of MQTT called Prioritized 

MQTT (PrioMQTT) that can provide low latencies for time-critical messages. Unlike traditional 

MQTT, PrioMQTT is built on the UDP/IP protocol, providing enhanced support for latency-

sensitive applications. It also features a system that prioritizes critical messages. 

 The combination of the UDP/IP stack and priority support in the PrioMQTT protocol is achieved 

while maintaining compliance with the MQTT standard message format. Therefore, PrioMQTT 

can be deployed on commercial-off-the-shelf (COTS) devices without hardware modifications. 

The paper explains the PrioMQTT protocol and evaluates its performance in a realistic industrial 

setting, comparing it with the standard MQTT protocol. The results confirmed the validity of the 

proposed approach in reducing the RTT while properly handling the priorities of the messages. 

According to a recent study (Mishra & Reddy, 2024), a comparison was introduced between 

MQTT, CoAP, and MQTTSN. The study evaluates the systems based on specific performance 

metrics, such as overhead, round-trip time, server response time, and reliability. Researchers 

establish ProtoLab as a realistic test bed and use it to assess the performance of protocols with 

different network configurations. According to their results, MQTT, CoAP, and MQTT SN 

performance vary based on the network conditions, such as static, dynamic, and poor network 

environments. In scenarios where the network remains steady or static network conditions, CoAP 

might demonstrate improved performance over MQTT and MQTT-SN under specific conditions. 

In dynamic network settings, MQTT-SN proves more effective than MQTT and CoAP, benefiting 

from its minimal overhead and design simplicity. 



22 
 

In poor network conditions marked by elevated latency, packet loss, or restricted bandwidth, 

MQTT can gain the upper hand thanks to its reliability features. The QoS levels offered by MQTT 

are equipped to manage scenarios with substantial packet loss, ensuring reliable message delivery 

even in demanding network conditions. The overall performance analysis indicates that MQTT-

SN outperforms both MQTT and CoAP in supporting resource-constrained devices. 

2.3 A summary of the research papers 

A summary of the related research papers is presented in Table 2.1, along with an explanation of 

the performance metrics for each work.  

 

Table 2.1: An overview of existing Papers on IoT application layer protocol. 

# work Year IoT protocol Performance 

Metrics 

Results show that 

1 Mijovic et 

al. 

2016 MQTT, 

CoAP, 

WebSocket 

Overhead, 

average RTT. 

The performance of MQTT is affected by the 

chosen Quality of Service (QoS) level, whereas 

CoAP demonstrated greater protocol 

efficiency and achieved the lowest average 

round-trip time (RTT) among the evaluated 

protocols. 

2 Bani 

Yassein et 

al.  

2016 XMPP, 

MQTT, 

CoAP, 

RESTFUL, 

DDS, 

AMQP, and 

WebSocket 

security QoS. Evaluated each protocol's benefits and 

drawbacks. 

The selection of a suitable application layer 

protocol depends on several factors. 

3 Hantrakul et 

al. 

2017 MQTT, 

HTTP 

power 

consumption 

The HTTP protocol consumed ten times more 

power than the MQTT protocol 

4 Kayal & 

Perros. 

2017 CoAP, 

MQTT, 

XMPP, 

WebSocket 

response 

time. 

CoAP outperforms the other message queue-

based protocols when server utilization is low. 

On the other hand, when considering that the 

program has the CPU power to support 



23 
 

multithreading, WebSocket performs better 

than the other three protocols. XMPP performs 

better when the program supports multi-

threading in order to minimize server 

utilization. Except for WebSocket, which 

shows the opposite tendency, the average 

response time of all protocols increases as 

server occupancy increases. 

5 Naik, 2017 2017 MQTT; 

CoAP; 

AMQP; 

HTTP; 

Overhead 

Bandwidth 

Latency 

To demonstrate a broader and comparative 

picture of messaging protocols, the author 

presents a comprehensive and comparative 

view of these protocols, enabling the end-user 

to make an informed decision about which 

protocol best suits their needs. 

6 Khalil et al. 2018 CoAP, 

MQTT, and 

UPnP 

memory & 

CPU 

footprint, 

latency. 

CoAP outperforms both MQTT and UPnP, 

but it requires higher memory usage. CoAP is 

likely to be the de facto standard for resource 

discovery in IoT environments. 

7 Wukkadada 

et al.  

2018 HTTP, 

MQTT 

power 

consumption 

MQTT power consumption was lower than 

that of HTTP; messages sent by MQTT have 

a 100% delivery rate. 

8 Hofer & 

Pawaskar 

2018 HTTP, 

MQTT 

Overhead, 

throughput. 

energy 

consumption 

The proportion of data to overhead is better in 

MQTT, and the throughput is up to 3.85 times 

higher compared to REST. MQTT's Quality 

of Service (QoS) levels can ensure reliable 

message transmission, even in areas with poor 

connection quality. 

9 Jaloudi. 2019 MQTT latency over 

the cloud 

MQTT protocol is suited for small to 

medium-sized IoT-based applications that 

exchange messages with online MQTT 

servers, and medium to large-scale 

applications that exchange messages with 

local MQTT servers.  



24 
 

The measurements do not depend only on the 

network latency but also on the server itself. 

10 Marques et 

al.  

2018 CoAP, 

HTTPS, 

MQTT 

latency, 

Jitter, 

throughput. 

Results from MQTT were the best. 

Additionally, CoAP did very well. To 

optimize power consumption, enabling sleep 

mode is recommended. 

11 Bansal & 

Kumar 

2019 MQTT, 

CoAP, DDS 

Latency, 

bandwidth, & 

Data loss 

CoAP and DDS experience less latency as 

compared to MQTT. 

12 Sultana & 

Dumitrescu 

2019 MQTT, 

AMQP, 

HTTP, 

XMPP, 

CoAP, DDS. 

latency, 

throughput, 

packet loss, 

bandwidth, 

overhead, 

energy 

The MQTT protocol can be applied and used 

to implement IoVT-based real-time video 

surveillance applications in a constrained 

environment. MQTT can transmit visual data 

from an IoVT edge node, as it uses less 

bandwidth and has suitable application 

latency. The high overhead and bandwidth 

usage make the HTTP protocol unsuitable as 

an IoVT edge node protocol in constrained 

environments, even though it is the most 

widely used and adapted for various 

applications. The author proposed HTTP as a 

suitable communication method between a 

resourceful fog node and an unconstrained 

cloud in an IoVT video surveillance case."  

For the CoAP protocol, a significant delay in 

large visual data being transmitted makes it 

inappropriate for an IoVT edge node. Also, 

XMPP is not suitable for implementation in 

IoVT-edge nodes due to its high overhead and 

latency in data transfer, XMPP is not suitable 

for implementation in IoVT-edge nodes  



25 
 

13 Zorkany et 

al. 

2019 MQTT, 

CoAP 

average byte, 

ratio delay. 

The MQTT protocol provided better results 

than the CoAP protocol in terms of delay, the 

number of messages lost. 

14 Šikić et al. 2020 HTTP, 

MQTT, 

AMQP 

traffic load 

and delivery 

latency. 

The MQTT protocol is appropriate for all IoT-

based smart grid use cases since it achieves the 

lowest message delivery time and the smallest 

protocol overhead. 

15 Kassem & 

Sleit. 

2020 MQTT, 

CoAP 

elapsed time. When the sensor network size increases, 

CoAP continues to show better performance. 

16 Seoane et al. 2021 MQTT, 

CoAP 

bandwidth & 

CPU use 

The MQTT protocol is more bandwidth 

demanding as it adds TCP overhead, but it 

offers different QoS. 

17 Kumar & 

Jamwal  

2021 MQTT, 

XMPP, 

CoAP, 

CASTOR, 

AMQP, and 

LIDOR 

Overhead 

Security 

packet loss 

bandwidth 

QoS  

Concluding that LIDOR is the most efficient 

due to its end-to-end feedback mechanism, 

high QoS support, and strong performance 

under DoS attacks. 

18 Silva et al. 2021 MQTT, 

CoAP, and 

OPC UA 

time-to-

completion 

and packet 

loss. 

OPC UA, produced a higher time-to-

completion in comparison to CoAP or MQTT. 

CoAP is the protocol with the lowest time-to-

completion across all scenarios. 

19 Palmese et 

al.  

2021 CoAP vs. 

MQTT-SN 

End-to-end 

delay. 

CoAP is the best choice for highly dynamic 

networks. 

20 Bayılmış et 

al.  

 

2022 MQTT, 

CoAP, 

XMPP, DDS, 

AMQP, and 

WebSocket, 

Throughput, 

delay time, 

energy 

consumption 

CoAP is well-suited for IoT applications that 

involve high traffic loads, require low energy 

consumption, and do not demand a handshake 

procedure. 

MQTT is well-suited for IoT scenarios that 

require secure data exchange and the 

simultaneous delivery of messages to multiple 

subscribers. WebSocket is a good choice for 

IoT applications that desire high data rates. 



26 
 

21 Tsvetanov 

& 

Pandurski,  

2022 HTTP, 

HTTPS, 

MQTT, and 

MQTT-SN, 

data rate, 

CPU, and 

RAM load 

The results give some advantages of MQTT 

over other protocols in terms of data rate, 

CPU, and RAM load when working with 

XBee sensor modules and integration between 

WSN and cloud structures.  

22 Nwankwo et 

al.  

2024 MQTT-SN, 

CoAP 

latency and 

energy 

consumption 

The abstraction layer provides the ability for 

both MQTT-SN and CoAP protocols to be 

used simultaneously on constrained IoT 

devices. 

23 Patti et al.  2024 MQTT latency proposed an IIoT-enabled version of MQTT 

called a Prioritized MQTT (PrioMQTT), 

which reduces the RTT while properly 

handling the priorities of the messages. 

24 Mishra & 

Reddy.  

 

2024 MQTT, 

CoAP, and 

MQTTSN  

overhead, 

RTT, server 

response time 

reliability. 

The results show that the performance of 

MQTT, CoAP, and MQTTSN can differ 

significantly depending on the network 

conditions. Performance comparison shows 

that the MQTTSN is better than the MQTT 

and CoAP protocols for constrained devices.  

25 Tran et al. 2024 MQTT, 

HTTP, 

AMQP 

bandwidth, 

latency. 

 

MQTT and AMQP play a role in enhancing 

overall efficiency and speed within the 

framework of our suggested photovoltaic 

system. 

 

2.4 Discussion for literature review 

Table 2.1 summarizes the key concepts of the related works. It shows the year the paper was 

published, the IoT protocol used in each research paper, and the performance metrics for each 

work, where a variety of metrics were used in these papers to assess and compare the performance, 

including the amount of data sent, overhead, latency, round-trip time (RTT), bandwidth, Packet 

Loss, and throughput. A network's performance can be determined by several factors, including 

the number of users, the type of transmission media, the capabilities of the connected devices, and 

the software's efficiency.  



27 
 

It was also noticed that the most quantitative metric that was measured to indicate the tested 

protocol's performance was the message latency. In general, these metrics can be divided into 

categories depicted in Table 2.2.  

A. Time-Based  

The first category includes time-related metrics such as latency, jitter, round-trip time, throughput, 

and response time, which means that the time required to transfer data packets between IoT 

endpoints or nodes. Many papers discussed and evaluated these important metrics. For example, 

the study (Šikić et al., 2020), showed that the MQTT protocol is appropriate for all IoT-based 

smart grid use cases since it achieves the lowest message delivery time and the minimal amount 

of data overhead. Another study's results showed that MQTT is four times faster than the HTTP 

protocol when comparing the message sent latencies. This is because MQTT is a message-oriented 

protocol that uses the publish-subscribe approach. In contrast, the HTTP protocol uses the request-

response model, which is a document-oriented protocol. 

 

According to the study in (Jaloudi, 2019), online brokers were tested, and the results show that the 

server broker HiveMQ has the lowest latency among them. From these results, it is concluded that 

the measurements not only depend on the network latency but also on the server itself. 

The results of (Sultana & Dumitrescu, 2019) showed that MQTT can transmit visual data from 

an IoVT edge node, as it uses less bandwidth and has suitable application latency in a constrained 

environment. A comparison between CoAP and MQTT was conducted in the experimental work 

(Zorkany et al., 2019). From the practical implementation of these protocols, the MQTT protocol 

revealed better results than the CoAP protocol in terms of latency, the number of messages lost, 

and the number of bytes used in messages. The fact is that implementing an appropriate messaging 

protocol reduces latency through IoT nodes. 

B. Packet and Transmission 

The second category includes packets and their relevant features for data transfer, such as payload 

and overhead. For HTTP, due to its high bandwidth consumption and significant data overhead, 

the protocol is considered unsuitable for use as an IoVT (Internet of Video Things) edge node 



28 
 

protocol in resource-constrained environments. Although CoAP consumes less bandwidth and 

incurs reduced costs per packet, the high latency when sending large amounts of data makes it 

unsuitable for IoVT edge nodes. Additionally, the XMPP Protocol did not seem suitable for this 

scenario due to its high data transfer latency (Hofer & Pawaskar, 2018). As a result of the study, 

MQTT has significant advantages over REST HTTP because these application layer protocols are 

specialized for IoT communication, while HTTP has been extended to meet new requirements. 

The data-to-overhead ratio is better in MQTT, and its throughput can be up to 3.85 times higher 

than REST HTTP. It is important to remember that large headers can cause performance issues, 

increased latency, or even denial-of-service attacks. Therefore, it is recommended to keep HTTP 

headers at a suitable length. CoAP is the most appropriate protocol for applications with 

constrained resources, as it introduces the least overhead, according to a study (Mishra & Reddy, 

2024). A study by Khalil et al. (2018) mentioned that CoAP uses a binary format for encoding, 

with a header size of 4 bytes. For MQTT, the payload message has a maximum size of 256 MB, 

with a message header length of 2 bytes for each MQTT command. CoAP performs better on low-

power and network-constrained devices. While MQTT is the best choice for applications that rely 

on the pub/sub methodology, after reviewing every paper that has been evaluated, it is clear that, 

as of right now, there are no common or standard technologies or protocols that can be employed 

with an Internet of Things system. XMPP has a larger overhead as it embeds messages in XML 

stanzas. 

C. Energy and Power Use 

The third category is concerned with energy and power use, as the study results by Wukkadada et 

al. (2018) show that MQTT power consumption is lower than that of HTTP and also indicate that 

the messages sent by MQTT have a 100% delivery rate. This is what the study (Hantrakul et al., 

2017) confirmed: HTTP is observed to be consuming more power. In the tests conducted, the 

HTTP protocol consumed 10 times more power than the MQTT protocol, and the fourth category 

focuses on hardware usage, including CPU and RAM usage. 

Based on the related works discussed in Table 2.1, it was found that the MQTT performance 

significantly depends on the Quality of Service (QoS), as mentioned in [(Mijovic et al., 2016), 



29 
 

(Marques et al., 2018)]. This QoS is important in MQTT due to its role in providing the client with 

the ability to select a service level that corresponds with the application’s requirements. 

These studies used a variety of hardware platforms and software platforms, such as 

STMicroelectronics Nucleo-F411RE, as in paper (Mijovic et al., 2016), the Raspberry Pi as in 

papers (Khalil et al., 2018), (Hofer & Pawaskar, 2018), (Jaloudi, 2019), (Marques et al., 2018), 

(Sultana & Dumitrescu, 2019), ESP8266 as in (Wukkadada et al., 2018), (Jaloudi, 2019), 

(Marques et al., 2018). Arduino as in (Sultana & Dumitrescu, 2019) and simulation using Contiki 

software as in (Bansal & Kumar, 2019), (Šikić et al., 2020), or simulation using WANEM software 

as in (Zorkany et al., 2019), or Network SIM-IOTIFY as in (Šikić et al., 2020), as well as 

technologies such as wired and wireless networks. As a result, it is concluded that there is no 

general model or approach to investigate the performance comparison. 

The protocol that uses the least power is MQTT, and it is suitable for energy-constrained IoT 

environments (Dash & Peng, 2022). Therefore, it is used in scenarios that enable reducing battery 

power consumption in smart cities.  

Table 2.2: The three categories the literature review focuses on 

 Category Relevant features 

1 Time-Based Round Trip Time (RTT), delay(latency), jitter & throughput. 

2 Packet and Transmission Payload, Message Delivery Rate, and Overhead. 

3 Energy Battery Life, Energy, Power use. 

 

 

 

 

 

 

 

 

 

 



30 
 

 

Chapter 3: Methodology 1  

Comparative study of main IoT protocols  

 3.1 Introduction  

One of the important tasks carried out by the communication protocol in the architecture of the 

IoT is to collect data from nodes, send it, and store it in the appropriate form for the application 

scenario. Each layer of the IoT architecture has a set of protocols. In the following section, the 

author reviews some of the common protocols in the application layer. These protocols are HTTP, 

MQTT, CoAP, AMQP, and XMPP. These protocols will be introduced and conceptually 

compared. 

 

3.2 Application-Layer Protocols Overview 

3.2.1 Hypertext Transfer Protocol (HTTP) 

HTTP is a web messaging protocol used for data exchange. It is a client-server protocol, based on 

the request-response RESTful Web architecture model (IETF Datatracker, 2022). Requests are 

sent from the client to the server, and a response is sent back from the server. HTTP utilizes 

Universal Resource Identifiers (URIs) and operates as a text-based protocol that represents all data 

in human-readable ASCII text format. It is a text-based protocol that expresses all data as human-

readable ASCII text. Besides the actual data, specific meta information is transmitted in both the 

HTTP request and the server's response, which is located inside the HTTP header.  

HTTP itself depends on TCP/IP to get requests and responses between the client and server. By 

default, TCP port 80 is used, but other ports can also be used. HTTPS, however, uses port 443. 

HTTP data is carried above the TCP protocol, ensuring reliability of delivery, and these are the 

steps by which the HTTP protocol transmits data packets, as shown in Figure 3.1: 

In the HTTP communication process, the client initiates a connection by sending a SYN message 

to the server. Then, the server responds with a SYN-ACK packet, to which the client replies with 

an ACK packet, completing the connection establishment. This process is commonly referred to 

as a three-way handshake. After the connection is established, the client sends an HTTP request to 



31 
 

the server to access a specific resource. The client then waits for the server to process the request. 

The web server executes the request, locates the desired resource, and returns the appropriate 

response to the client. When the client no longer requires additional resources, it terminates the 

TCP connection by sending a FIN packet. Because HTTP uses familiar and compatible web 

technologies. This advantage makes this protocol one of the most important protocols used for the 

Internet of Things, and its integration with web services is simple and efficient. 

 

 

  

 

  

 

 

 

 

 

Figure 3.1: HTTP Three-way handshake in opening a connection 

 

The four most common methods used in it are GET, POST, PUT, and DELETE. GET is used to 

obtain data from a server, POST is used to send data to a server, PUT is used to update existing 

data on a server, and DELETE is used to remove data from a server. These are the main methods 

of RESTful applications and services. Additionally, the server provides various types of responses, 

called response status codes, and they are represented by numbers. These codes indicate whether 

a specific HTTP request has been completed (Mozilla, 2023). 



32 
 

HTTP requests and responses share a similar structure and are composed of (Mozilla, 2023): 

1. A start-line describing the requests to be implemented, or their status, whether successful 

or a failure. This is always a single line. 

2. An optional set of HTTP headers specifying the request, or describing the body included 

in the message. 

3. A blank line indicates that all meta-information for the request has been sent. 

4. An optional body containing data associated with the request (like the content of an 

HTML form), or the document associated with a response. The presence of the body and 

its size are specified by the start-line and HTTP headers. 

The start-line and HTTP headers of the HTTP message are collectively known as the head of the 

request, whereas its payload is known as the body, as shown in Figure 3.2. 

  

 

 Figure 3.2: An example of an HTTP request and response message 

In an IoT environment, a common use of HTTP is to allow devices to POST to a resource that 

represents the device state on the IoT service (HiveMQ, 2023).  

HTTP has recently been connected to the REST architecture to enable communication between 

different components through web services. Various data formats, including JSON and XML, are 

supported, making it suitable for diverse IoT data exchange requirements. A huge number of tiny 

packets need to be transmitted via HTTP, which is not designed for IoT applications (IETF 

Datatracker, 2022). 



33 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.3:  basic request-response model of communication between a web browser and a server 

over HTTP. 

3.2.2 Message Queuing Telemetry Transport (MQTT) 

MQTT is a lightweight, event-based protocol. Based on the client-server paradigm, it is a message-

oriented protocol; nevertheless, the server that runs it functions more like a broker or gateway 

(MQTT, 2023). It was invented by IBM, aiming to reduce bandwidth requirements, and is a 

suitable choice for IoT devices. It is a great protocol for connecting remote devices using the least 

amount of network resources. The communication between the client and broker is connection-

oriented because it is built on top of TCP. See Figure 3.4 

 

 

 

Figure 3.4: The message request-response in the MQTT protocol 



34 
 

MQTT follows the publish-subscribe paradigm, which is defined by three actors: the publisher, 

the subscriber, and the broker, as shown in Figure 3.5. The publisher creates the data and sends 

messages to the broker to publish the data. The broker then sends the data to all subscribers who 

have subscribed to that data topic.  In the publish-subscribe pattern architecture, each node is either 

a data producer (publisher) or a data consumer (subscriber).  

 

 

 

 

 

 

Figure 3.5: MQTT architecture. 

MQTT is characterized as a binary-based protocol, in which control elements are represented by 

binary bytes rather than text strings (Steve’s-internet-guide, 2023). Then the data is exchanged as 

plain text. Since MQTT runs on top of TCP, communication between client and broker is 

connection-oriented. The broker handles messages for each device connection using a topic. 

Generally, a topic is composed of multiple levels separated by a slash. 

 One of the significant features of this protocol is that the subscriber does not need to know the 

publisher's IP; on the other hand, the broker needs to be recognized by each client's MQTT protocol 

port and IP address. 

Within the context of Quality of Service (QoS), levels are agreements between the system nodes 

that define the guarantee of delivery for specific messages. MQTT utilizes several quality service 

levels that provide different delivery guarantees for messages. Both the subscribe and publish 

message bodies can be defined as one of these levels, so MQTT delivers messages using three QoS 

levels. QoS 0, 1, and 2 (MQTT, 2023): 



35 
 

QoS level 0: (At most once), a message is sent only once without checking whether it reaches its 

destination, so the messages are not guaranteed to arrive. Loss may occur without 

acknowledgement and confirmation of message reception. QoS level 0 is often referred to as "fire 

and forget." 

QoS level 1 (At least once), messages are guaranteed to be delivered to the recipient at least once, 

but duplicates may be received if acknowledgments are lost or retransmissions occur. This QoS 

level ensures reliable message delivery through acknowledgment packets; however, the receiving 

application is responsible for handling potential message duplication. 

QoS level 2 (Exactly once), messages are guaranteed to be delivered to the intended recipient 

exactly once, with no duplication or loss. This level employs a four-step handshake process with 

acknowledgments to ensure message integrity and uniqueness. While QoS 2 offers the highest 

level of reliability among MQTT quality-of-service levels, it is associated with increased latency 

and protocol overhead due to its more complex delivery mechanism. Therefore, selecting an 

appropriate QoS level should be carefully aligned with specific network conditions and application 

requirements. By utilizing QoS levels 1 and 2, reliable message delivery can be achieved, ensuring 

that data packets reach their destination even under unstable network conditions. 

MQTT's scalability and reliability are among its main benefits (Spohn, 2022). The MQTT protocol 

is utilized by each of the leading cloud systems, including Microsoft Azure, IBM Cloud, and 

Amazon Web Services. It also gets used by both the Messenger and Instagram apps on Facebook 

and is considered the most favorable connection protocol for M2M and IoT (Bani Yassein et al. 

2016). 

 

Message Payload 

A 256MB maximum MQTT PUBLISH payload size is specified by the MQTT protocol; however, 

most clients in M2M and IoT scenarios are unlikely to send messages with such large payload. 

The message header for each MQTT command message typically contains a fixed header, which 

is 2 bytes long, as shown in Figure 3.6. 



36 
 

 

 

 

Figure 3.6: MQTT Fixed Header Format. 

Some messages also require a variable header that contains protocol name, protocol version, 

topic name, and several flags, and a payload message, which is the actual data being transmitted. 

Figure 3.7 shows the message format defined by the MQTT protocol, which includes a fixed 

header, an optional variable header, and a payload. 

 

 

 

 

Figure 3.7: IoT MQTT Message Format 

Regarding MQTT data transmission, MQTT transmits messages over a TCP connection. The 

Eclipse Foundation developed and maintains the Java-based Paho library, which was applied to 

implement the client-side application [eclipse]. The Paho library provides fully developed 

implementations that enable a developer to send data as MQTT messages over TCP and 

WebSocket connections. Paho library has these features; there's no need for a self-developed 

solution to complete the work.  MQTT is used in many industries today, including remote 

monitoring, automotive, forestry, messaging applications, home automation, and more. In 

addition, it is beneficial and suitable for Wireless Sensor Network applications. 

3.2.3 Constrained Application Protocol (CoAP) 

The Constrained RESTful Environments (CoRE) working group of the Internet Engineering Task 

Force (IETF) developed the CoAP protocol in June 2014. The standard for this protocol is 

described in the document RFC 7252 (IETF Datatracker, 2022). CoAP follows a client-server 

architecture, where clients send requests to servers, which in turn respond with the requested data. 

CoAP and HTTP both have the same methods, like GET, PUT, POST, and DELETE. 



37 
 

It employs UDP packets for transmission, primarily designed for small, low-power, and 

constrained devices, to support REST services in M2M communication, as well as for 

communicating with HTTP using simple proxies, thereby supporting constrained devices and 

networks. 

The packet size of CoAP is smaller than that of HTTP TCP packets. CoAP defines four different 

types of messages: confirmable, non-confirmable, acknowledgement, and reset. (Eggly et al., 

2018). 

A. Confirmable (CON). These messages require an acknowledgement to be sent by the other 

communicating part. When the network does not cause packet losses, each CON message 

triggers exactly one return message of type Acknowledgement or type Reset. If no ACK 

or RST is received, after a certain time, the CON message is assumed to be lost, and it is 

retransmitted. 

B. Non-confirmable (NON). These messages do not require an acknowledgement, offering 

no reliability.  

C. Acknowledgement (ACK). An ACK message acknowledges receipt of a particular CON 

message. It is also able to carry the response to the request, a process known as 

piggybacked response.  

D. Reset (RST). This message reports that a particular message (CON or NON) was 

received, but it cannot be properly processed. This event typically occurs when the 

receiver has rebooted and forgotten some state required to interpret the message 

correctly. Provoking a Reset message (e.g., by sending an Empty CON message) is also 

useful for checking the liveness of an endpoint, such as with a CoAP ping.  

The CoAP protocol is commonly found in smart home environments, as well as in traffic 

monitoring and environmental monitoring applications. CoAP can connect multiple IoT devices, 

such as streetlights, garbage cans, and parking sensors, in smart city projects. 



38 
 

 

  

  

  

 

 

Figure 3.8: CoAP architecture. 

To reduce the typical overhead caused by protocol headers, the message format in the protocol has 

been designed to be light and straightforward. Simple binary encoding is used for CoAP messages. 

The CoAP message format consists of a fixed 4-byte header, followed by a code field that ranges 

from 0 to 8 bytes long. As shown in Figure 3.9, a one-byte payload marker (0xFF) appears before 

the payload field if it exists. Only the 4-byte header is required; the rest is optional.  

 

 

 

 

 

Figure 3.9: IoT CoAP Message Format adapted from (Becker, 2013). 

3.2.4 Extensible Messaging and Presence Protocol (XMPP) 

 

XMPP is widely recognized as a popular protocol for instant messaging and has been adopted by 

various Internet platforms, including Google Talk, Cisco, Live Journal, and BBC Radio Live Text, 

among others. It is an open-source protocol used for applications involving instant messaging for 

real-time data streaming, such as audio and video communication. 



39 
 

XMPP is one of the protocols that supports the publish-subscribe pattern (XMPP, 2023) that uses 

a client-server architecture to deliver the message, but also XMPP supports request/ response 

architecture, and the choice of which architecture to use is on the application developer. It also 

provides server-to-server communication where communication between two clients is not 

possible. "XML stanzas," which are XML-based messages, are used for communication between 

the client and the server, creating additional loads as a result of unnecessary tags, and they also 

require an XML parser, which requires computing capacity that increases energy consumption. 

The network communication is based on a client-server approach. Figure 3.10 illustrates the 

overall behavior of the XMPP protocol, among which gateways can bridge between foreign 

messaging networks. XMPP creates a unique ID called Jabber ID, which gives the information of 

the client to whom a message is to be sent. This ID is used by the XMPP server to route the message 

across a TCP connection. An XML server stream is established with the server, and the client is 

identified using a Jabber ID. The server will begin another XML stream after determining the 

client. The server will send the stream to the client, making the XML stream bidirectional. One of 

the weak points of the protocol is that data transfer is comparatively slow, as XMPP uses a thin 

bath for transferring binary data.  Another weak point must have been mentioned here: the XML 

message added additional overhead because it has a lot of headers and tag formats, so it consumes 

more power. 

 

 

 

 

 

 

 

Figure 3.10: XMPP communication system architecture adapted from (Wang et al., 2017). 



40 
 

3.2.5 Advanced Message Queuing Protocol (AMQP) 

 

AMQP is an application layer protocol standardized by OASIS and designed for message-oriented 

networks & it has support for Publisher/Subscriber architecture. It uses TCP as a transport protocol 

to provide reliable communication. Besides this, to provide QoS guarantees, it has three levels of 

delivery, namely at least once, at most once & exactly once. Along with Publishers & Subscribers, 

it has two more components, Exchanges & Message queues. Exchanges perform the routing 

functionality by forwarding messages to appropriate message queues. These messages can be 

stored in message queues before forwarding them to Subscribers. AMQP uses two different 

message types. First, bare messages which are used by Publishers, and second, annotated messages 

which are used by Subscribers (Al-Fuqaha et al., 2015).  

Advanced Message Queue Protocol (AMQP) originated in the financial services industry in 2006. 

It was initially designed for financial transaction processing systems, such as trading and banking 

systems, which require high guarantees of reliability, scalability, and manageability. It is an 

increasingly important protocol for message-oriented middleware (MOM) with its origin in the 

financial services industry. The main purpose of the AMQP protocol is to handle thousands of 

queued transactions. AMQP is a middleware protocol extensively used for exchanging messages 

in distributed applications. It is an asynchronous message queuing protocol that aims to create an 

open standard for transmitting messages between applications and systems regardless of internal 

design. It was designed to enable interoperability between different applications and systems. 

 

Figure 3.11: AMQP communication architecture 



41 
 

3.3 Chapter discussion  

Over the past two decades, several studies have been published that compare the performance of 

IoT application protocols. In this section, the features of the protocols will be compared on a 

conceptual level using evidence from the literature to make a clear comparison between the 

protocols. The characteristics of different application layer protocols are shown in Table 3.1 

Table 3.1: Characteristics of application layer protocols MQTT, CoAP, XMPP, AMQP, and 

HTTP 

Protocol  MQTT CoAP HTTP XMPP AMQP 

Main 

Purpose 

M2M, 

Constrained 

devices 

low-overhead 

M2M, 

Constrained 

devices 

web 

messagin

g 

protocol. 

Instant 

messaging,  

XML data 

M2M 

Methodolo

gy 

Message 

oriented 

(Data-centric) 

Document 

oriented 

Documen

t oriented 

Message 

oriented 

message 

oriented 

Architectur

e 

broker/ client Client/ Server 

Client/ Broker 

Client/ 

Server 

Client/ 

Server 

broker/ client 

Pattern Publish/ 

Subscribe 

Publish/ 

Subscribe 

Request/ 

Response 

Request/ 

Response 

Publish/Sub

scribe 

Publish/ 

Subscribe 

Request/ 

Response 

Transport 

Layer 

TCP UDP TCP TCP TCP 

Header 

Size 

2 byte 4 byte Undefine

d 

Undefined 8 byte 

Payload 

Format 

Supports binary 

and text 

payloads 

Supports binary 

and text 

payloads 

Text,  

Binary in 

HTML 2 

XML binary and text 

payloads 

Message 

Size 

256 MB 

maximum 

Small & 

undefined 

Undefine

d 

64 KB 

stanza 

128 MB max 

recommended 



42 
 

Large size 

Security TLS/SSL DTLS, SSL TLS/SSL TLS/SSL TLS/SSL  

Default 

Port 

1883,8883 

(TLS/SSL) 

5683 (UDP)/ 

5684 (DLTS) 

80 and 

443 

5222 and 

5269 secure 

(TLS) 5223. 

5672 or 5671 

QoS • Exactly once 

 • At least once 

 • At most once 

Confirmable 

 Non-

Confirmable 

not 

support 

not support • Exactly once 

 • At least once 

 • At most once 

Licensing Open Source Open Source Free Open 

Source 

Open Source 

Standard  OASIS  IETF IETF IETF OASIS  

 

Studying the differences between available IoT protocols will help in selecting the best option for 

an IoT scenario. The selection between these protocols should be made after considering several 

features and characteristics such as network architecture, Methodology, messaging pattern, 

Transport Layer, payload size and format, security mechanisms, and quality of service options. 

MQTT is designed for M2M communications in constrained networks, and CoAP was developed 

for low-overhead M2M constrained devices. AMQP is a lightweight M2M protocol, and XMPP is 

an Instant Messaging (IM) protocol developed essentially to allow communication between people 

through messages. HTTP was originally designed for the Web and not for the IoT; therefore, it 

requires maximum overhead and a larger message size among all protocols. 

For connectivity issues, HTTP, MQTT, AMQP, and XMPP are designed to run on networks that 

use TCP as a transport, while CoAP is the only protocol that uses UDP, making it the most 

lightweight and not requiring a handshake method.  

While HTTP communication patterns are implemented based on a request-response model, 

protocols such as MQTT, AMQP, and XMPP are structured using a publish-subscribe 

communication model, and CoAP implements both. MQTT contains a smaller header of only 2 

bytes compared to 4 bytes for CoAP and AMQP, which has a header size of 8 bytes. HTTP headers 

include various metadata about content type, cookies, requests, or responses, and more. 



43 
 

The size of the HTTP header varies depending on the type of header and the amount of information 

included in the request or response. Despite its overhead, HTTP continues to be used in IoT devices 

due to its widespread compatibility with existing systems and infrastructure. 

HTTP may transfer a large amount of data in tiny packets, which causes large overhead. Use of 

HTTP in complex systems can lead to high latency due to the increased number of requests sent 

periodically. XMPP uses XML messages. XML messages cause additional overhead due to several 

headers and tags, named traffic overhead. XML overhead increases the power consumption of IoT 

devices, which is the biggest disadvantage of IoT. MQTT overhead is low when compared to 

XMPP and HTTP.  Due to its low overhead, MQTT is suited for devices with limited resources, 

making it ideal for scenarios where minimizing data transmission duration is needed. For Payload 

Format, MQTT, AMQP, and CoAP are binary protocols; HTTP is a text-based protocol. 

When the QoS is compared, MQTT implements three qualities of service (QoS) levels, and AMQP 

also supports three QoS levels. while CoAP limits QoS to two message types: confirmable and 

non-confirmable. For protocols such as XMPP and HTTP, QoS is not handled at the application 

layer but is instead provided by the underlying transport protocols, such as TCP. 

Although HTTP doesn't offer any further choices, it depends on TCP, and this ensures successful 

delivery as long as the devices are connected. Since XMPP does not provide QoS features, all 

messages will be handled similarly. XMPP does not support any delivery guarantees. The 

performance of the MQTT protocol strongly depends on the quality of service (QoS) profile. It has 

better QoS as compared to the protocols CoAP and HTTP. The protocol provides strong QoS 

support, and no other protocol can match QoS 2, which offers the highest level of service in MQTT, 

and QoS2 ensures that each message is delivered exactly once to the intended recipients. To 

achieve this, QoS 2 involves a four-part handshake between the sender and receiver (HiveMQ, 

2023). The QoS provided by the CoAP is similar to that of QoS 0 of the MQTT (AL-MASRI et 

al., 2020).  

For security issues, almost all of these protocols implement the TLS/SSL or DTLS protocols as 

their security methods. For CoAP, it uses DTLS on top of its UDP transport protocol. Secure 

Sockets Layer (SSL) certificates, sometimes called digital certificates, is standard technology for 

securing an internet connection by encrypting data sent between a website and a browser (or 

between two servers). 



44 
 

XMPP, CoAP, and HTTP are standardized by the IETF Constrained RESTful Environments 

(CoRe) Working Group. MQTT and AMQP protocols were developed as open OASIS standards 

and ISO recommended protocols. 

3.4 Conclusion of This Chapter 

Through this chapter, the research methodology was applied, where a set of IoT protocols 

operating in the application layer was presented, and these protocols were compared by 

introducing their characteristics to determine their best-fit scenarios when applied in the smart city. 

The philosophy of HTTP revolves around the transfer of files and documents. It is a text-based 

protocol designed for communication between only two systems at a time. Although some 

developers use HTTP to transfer binary data by bypassing its typical functions, this protocol was 

not originally intended for this purpose. HTTP is an excellent protocol within the Internet space, 

but its design philosophy focuses on transferring HTML files. HTTP was developed to support 

request-response communication rather than event-driven communication. However, most IoT 

applications are event-based. 

So, it cannot meet the needs of devices with limited resources and power, such as sensor nodes. In 

IoT systems, Bytes are transferred, and the protocol that innovates in this field is MQTT. HTTP 

has several limitations that apply to IOT applications, and many advanced application-layer 

protocols such as MQTT, AMQP, and CoAP have been created to address these limitations. 

Therefore, it will be excluded from the application work in this thesis. 

CoAP is an excellent protocol for its application in the Internet of Things, but it faces a challenge 

in that the infrastructure to build a system for the protocol to work must be IPv6. Here, the system 

developer needs to design and develop a Gateway for data transfer. For this reason, I excluded the 

protocol from the applications and practical experiments intended for the fourth unit in this study.  

Based on the philosophy of the XMPP protocol, it was excluded because it is an XML-based 

format that requires a large number of bytes, making it not ideal for IoT applications in the smart 

city due to its verbosity and large size. The philosophy of AMQP (Advanced Message Queuing 

Protocol) is to provide a strong, flexible, and dependable messaging system that supports 

complicated message patterns and guarantees. AMQP was originally conceived not within 



45 
 

industrial automation circles, but financial sector. This protocol is good for exchanging financial 

data between banks and the financial services industry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 
 

Chapter 4: Implementation and Experiments 

This chapter outlines the implementation process and describes the experiments designed to 

evaluate the performance of the protocol chosen for this research. To carry out this performance 

evaluation and analyze the behavior of the protocol, emulate and model the smart city using 

scenarios similar to those in the real smart city system that contains a continuous data flow 

application that is similar in its working mechanism to some IoT applications, such as the IoT 

smart environmental monitoring system, healthcare applications, or smart transportation systems, 

that collect real-time traffic information through sensors as an example. 

4.1 Chosen protocol  

In the context of designing IoT system solutions for smart city purposes, after the author made 

these comparisons between protocols based on the philosophy of each protocol and the original 

purpose of its design and creation, it is important to answer the following question: Why did the 

researcher decide to use the MQTT protocol in conducting the experiments? 

Unit Two reviews the relevant literature, examines various protocols through theoretical 

comparisons, and explores the underlying philosophy of each protocol separately. This study 

concluded that the MQTT protocol is a compromise between HTTP, CoAP, XMPP, and AMQP 

protocols. 

MQTT is a lightweight uses a publish-subscribe model with minimal overhead that includes some 

important communication features, such as the message delivery assurance mechanisms which 

allow researchers to evaluate reliability under different network conditions, this is useful for 

measuring latency and message loss, as done in the experiments, also there are already available 

libraries that can be reuse to implement the clients and the MQTT broker, other reasons that 

encourage its use are supported by many platforms, brokers such as HiveMQ, and libraries like 

Paho-MQTT. 

This makes it a practical choice for real-world deployments and experimentation. Real-time data 

communication is a crucial issue in smart cities, and the MQTT protocol supports this feature for 

various use cases. 

MQTT might be the best option in some circumstances. MQTT is appropriate for low-bandwidth 

networks. In agreement with past studies, hundreds of IoT applications utilize several types of data 



47 
 

transmission protocols, and most of these publications found that MQTT stands out as the most 

suitable communication protocol for the IoT domain. 

"The MQTT protocol is concluded to be the most suitable and cost-effective option for 

implementing IoT systems due to its strong support through a wide range of middleware, software, 

and cloud servers based on the outcomes of numerous projects, applications, specifications, and 

system requirements. The next unit will address the question: How does the selected protocol 

perform in terms of latency and packet error? What are the reasons that make it particularly suitable 

for smart city applications? 

4.2 Implementation of Smart City Scenario-Based MQTT Data Protocol 

4.2.1 System Architecture Overview 

Once the protocol has been selected, an environment should be prepared to experiment. A system 

composed of one Raspberry Pi 4 Computer Model B has been set up. The system can measure, 

monitor, and report the traffic of data transfer in real time.  Raspberry Pi 4 Computer Model B is 

a popular, effective, low-cost minicomputer. It is suitable for prototyping machine-to-machine 

solutions. The Raspberry Pi 4 includes a high-performance 64-bit quad-core processor, dual-

display support at resolutions up to 4K via a pair of micro-HDMI ports, 8GB of RAM, dual-band 

2.4/5.0 GHz wireless LAN, Bluetooth 5.0, Gigabit Ethernet, and USB 3.0.  Raspberry Pi requires 

an operating system to perform; several operating systems are available for the Raspberry Pi. 

Raspberry Pi OS (previously called Raspbian) is the default Linux distribution for the Raspberry 

Pi. The 64-bit version of the Raspberry Pi OS with a desktop was opted for; this operating system 

is based on Debian version 12. To install this operating system, a microSD card is needed. Then, 

using the "Raspberry Pi Imager" in order to download the OS to the microSD card. Figure 4.1 

shows the Raspberry Pi 4 Computer Model B. 



48 
 

 

 

 

 

 

 

 

 

Figure 4.1: Raspberry Pi 4 Computer Model B. 

The system architecture shown in Figure 4.2 is the platform layout for all experiments, and it is 

composed of three layers or parts: two clients and a message broker.  

 

 

 

 

 

 

Figure 4.2: The system architecture of IoT  



49 
 

 

4.2.2 MQTT Publisher 

 

The first part represents the Sensing Layer it is a fixed IoT node device which is simulated by the 

raspberry pi 4 acts as the publisher located on a remote site sends data packets to a cloud-based 

broker HiveMQ which it is a public MQTT server (broker) act as a middle point that facilitates 

communication between the publisher (Raspberry Pi) and the subscriber (laptop) at specified 

intervals and based on the specified QoS levels, the third part is an endpoint consists of subscriber 

software to collect the data. A popular MQTT client library for Python, Paho- MQTT, will be used 

on the publisher side. (Craggs, n.d.-b). Typically, the publisher is a microcontroller that collects 

measurement data, such as air temperature or other parameters of a system. It publishes the data 

periodically or is triggered by a specific event, and the information can be retrieved by any number 

of subscribers. 

4.2.3 Broker (Public MQTT Broker) 

The MQTT broker is the central part of the entire MQTT protocol architecture. (Rennoch et al., 

2020), it acts as the server that passes the messages between the clients. The publisher transmits 

messages to the broker, which then receives the data and forwards it to the subscriber. Messages 

are obtained by the subscriber from the broker on a specific topic. MQTT brokers are usually 

installed in cloud environments where controllers and IoT devices communicate. However, 

sometimes brokers are installed locally on the devices. 

Many MQTT brokers are available, including desktop and cloud-based brokers (Jaloudi, 2019). 

There is a large variety of MQTT brokers available. Mosquitto is the most widely used broker. In 

addition to Mosquitto, a few more options are available for our messaging needs. Some popular 

MQTT brokers include HiveMQ (HiveMQ, 2023), RabbitMQ, EMQX, and AWS IoT Core. See 

Table 4.1. The online version of the Hive MQ broker will be used because it is free for testing, and 

installation or configuration is not required. An account should be created, a cluster set up and 

initialized, and the data posted to the MQTT broker “broker.hivemq.com”. Public MQTT Broker 

and Cloud-based MQTT broker are considered a secure and scalable environment. 

 



50 
 

Table 4.1: A List of Popular MQTT Brokers 

MQTT Broker Developer Web site definition 

HIVEMQ Hive MQ 

Germany 

https://www.hivemq.com/public-mqtt-

broker/ 

HiveMQ is a MQTT 

broker for M2M and 

IoT that produces 

reliable and 

performant open-

source MQTT clients. 

Open 

Automation 

Software 

 

(OAS) 

USA 

https://openautomationsoftware.com The OAS platform 

serves as an IoT 

Gateway and protocol 

bus, facilitating the 

transfer of data 

between devices, 

databases, 

applications, and IoT 

services. 

EMQX EMQ 

China 

https://www.emqx.com/en/mqtt/public-

mqtt5-broker 

EMQX is an MQTT 

broker that is scalable 

and open-source, with 

high performance, 

enabling the 

connection of over 

100 million IoT 

devices in a single 

cluster. 

MOSQUITTO Eclipse 

UK 

https://test.mosquitto.org/ An open-source 

message broker. 

 

https://www.hivemq.com/public-mqtt-broker/
https://www.hivemq.com/public-mqtt-broker/
https://openautomationsoftware.com/
https://www.emqx.com/en/mqtt/public-mqtt5-broker
https://www.emqx.com/en/mqtt/public-mqtt5-broker
https://test.mosquitto.org/


51 
 

4.2.4 MQTT Subscriber 

The remote laptop, which acts as another MQTT client ready to receive data packets from the 

broker in real-time and display them on the monitor, is configured as a subscriber for these topics. 

The client device used in this study was an HP ProBook 450 G6 laptop running Windows 10 Pro 

64-bit. Intel Core i7-8565U CPU @ 1.80 GHz, 8 GB of RAM, a 1024 GB SSD, and an Intel 

Wireless 7260 Network Adapter. The laptop is connected to the router over Wi-Fi and receives its 

IP address from the router. The Wireshark program analyzer was used to monitor and capture the 

MQTT packets transmitted between the devices and the broker.  

4.2.5 Python and IoT 

Python is a programming language used in IoT for its ease of use and its support of several 

libraries. It's ideal for industrial control, environmental monitoring, and smart home automation 

due to its ability to deal with large amounts of data. Python is compatible with microcontrollers, 

making it a useful tool for developing IoT systems. (Tao, 2024). 

Python is used to implement MQTT, with the Paho-MQTT library as the primary programming 

library. The Python Paho-MQTT library is a lightweight and ideal solution for Raspberry Pi 

applications and can be used to transfer data from a Raspberry Pi 4 to an MQTT broker. Paho-

MQTT is the most widely used MQTT client library within the Python community; it is an open-

source library that offers a simple API and supports various security mechanisms. It is ensured that 

the Paho-MQTT library is installed on the Raspberry Pi; it should be installed using pip: pip install 

Paho-MQTT. 

A Python script is created to send a payload to the HiveMQ broker. HiveMQ MQTT Client and 

Paho-MQTT were selected for the chosen protocol, which is MQTT. Therefore, the selected 

protocol is MQTT, due to its advantages—previously discussed in Sections 3.2.2 and 3.3—such 

as its simplicity, ease of implementation, and adaptability to high-latency networks. Since MQTT 

is a publish-subscribe protocol, subscribers must be familiar with the topic names in order to 

subscribe.  

In Python, strings are typically encoded using UTF-8. UTF-8 encoding uses 1 byte for ASCII 

characters. Thus, the total number of bytes is simply the number of characters in the string. For 

example, the length of the string "smart" consists of 5 bytes, and the length of the string "smart 

city" consists of 10 bytes, so each character will use 1 byte. 



52 
 

4.2.6 Network configuration 

In this project, as shown before, the publisher is simulated by the Raspberry Pi 4 with a Raspbian 

operating system, which is the default Linux distribution. The Internet connection of the network 

is established wirelessly after logging in to the Raspberry Pi via SSH by using an SSH client 

PuTTY Which is a program used to access the Raspberry Pi command-line interface it uses SSH 

(secure shell) to open a terminal window on the computer, see figure 4.4, also the laptop is 

connected to the internet through the same Wi-Fi network. When connected, the Raspberry Pi and 

the laptop receive a network IP address to enable them to be identified within the internal network 

among different devices using the same router. To wirelessly connect Raspberry Pi to the router, 

some changes need to be applied to Raspberry Pi configuration, then the LAN IP is looked up on 

the Raspberry using ifconfig, the router’s IP address is 192.168.1.1, and Raspberry Pi obtained the 

IP address 192.168.1.106. To ensure the connection has been established between the Raspberry 

Pi and the router, the laptop should successfully ping the Raspberry Pi IP address using the 

terminal, with the WiFi bandwidth fixed on the 2.4 GHz band for the router. Figure 4.4 illustrates 

the message exchange process in MQTT, and Figure 4.3 outlines the steps involved in establishing the 

communication process in MQTT. 

 

 

 

 

 

 

 

 

Figure 4.3:  Use PuTTY to Access the Raspberry Pi Terminal from a Computer 



53 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4:  Graph representing the Message exchange process in MQTT  

4.2.7 Performance evaluation of IoT MQTT protocol  

The goal is to find the performance of MQTT as an IoT protocol. The motivation of these 

experiments is to identify the issue in the latency effects of the MQTT protocol in the IoT based 

on network conditions (Analyze Latency). The network latency obtained from the experiment 

serves as a parameter for evaluating the quality of the network system 

Latency is the total time that passes between reading the sensor and the MQTT broker that is 

receiving the data. In more detail about our experiment, Latency is the period taken from when the 

publisher sends the data to the online HiveMQ MQTT broker. There are various methods to 

measure latency, including round-trip and one-way. One-way latency is measured by 

synchronizing the clocks on both the sender and the receiver and then subtracting the packet 

transmission time from the packet arrival time at its destination. The one-way approach of latency 

measurement was used in our test analysis. To measure latency, a timestamp must be embedded 

in the published message and compared with the timestamp recorded by the broker upon arrival. 

The payload is published with a timestamp to help in latency calculations on the broker side. The 



54 
 

latency is then calculated as the difference between the timestamp recorded by the Raspberry Pi 

before sending and the arrival time recorded by HiveMQ. 

4.2.8 Analyze Packet Sizes  

To analyze the obtained results, Wireshark software was utilized for packet capture and analysis 

to study the behavior of each protocol. Wireshark is the world's foremost network and packet 

protocol analyzer. The software shows what's happening on the network at a microscopic level 

(Wireshark, 2023). Wireshark can troubleshoot network issues, capture packets, and monitor 

network traffic through all types of media in real time. It can analyze a large number of distinct 

protocols. 

Valuable information about the message format and the efficiency of the protocols can be obtained. 

The packet contents and headers can be visualized using Wireshark. In IoT, Wireshark provides 

crucial details and insights into the communication between IoT devices and their supporting 

infrastructure. The main factors influencing the protocols' metrics, such as latency and bandwidth 

usage, could be identified. Wireshark offers excellent support for MQTT. The values of each 

MQTT message field are listed (EMQX, 2023). Data for analyzing different graphs are handled 

using Excel and Python's matplotlib; these curves are explained in each scenario. As a result, the 

data were collected, and a performance analysis was performed by comparing these results on a 

graph. 

4.2.9 Experiments 

Experiment 1: Small Payload Data ranging from 4 bytes to 512 bytes. 

The goal of this experiment is to examine and evaluate the performance of the MQTT protocol 

under different scenarios within smart city applications. To measure latency and message loss, the 

impact of small payloads on packet transmission times using the MQTT protocol is assessed. In 

this scenario, various levels of MQTT reliability are tested. The first test iteration involved sending 

small messages while varying message size by creating strings of different fixed lengths. The 

payloads ranged from 4 bytes to 512 bytes, specifically 4, 8, 16, 32, 64, 128, 256, and 512 bytes, 

all with the quality-of-service level QoS 0. The second test iteration was conducted using QoS 1, 

followed by QoS 2 in the third iteration. 

 



55 
 

Table 4.2: Packets in Bytes with three levels of QoS for Small Payload. 

Iteration Number / 

Payload (Byte) 

1 2 3 4 5 6 7 8 

First test (QoS 0) 4 8 16 32 64 128 256 512 

Second test (QoS 1) 4 8 16 32 64 128 256 512 

Third test (QoS 2) 4 8 16 32 64 128 256 512 

 

Experiment 2: Large Payload Data ranging from 4K bytes to 512K bytes. 

This experiment aims to evaluate the performance of the MQTT protocol under different scenarios 

in the context of smart city applications. The study evaluates latency and message loss by 

investigating the effects of large payload sizes on the packets' transmission time using the MQTT 

protocol. In this scenario, the different levels of reliability of MQTT are employed. The first test 

iteration involved sending large messages by varying the message size through the creation of 

strings with different fixed lengths. The payloads vary from 4K bytes to 512K bytes, considering 

4Kbyte, 8Kbyte, 16Kbyte, 32Kbyte, 64Kbyte, 128Kbyte, 256Kbyte, and 512Kbyte sizes, with the 

quality-of-service level QoS 0. The second test iteration was conducted using QoS level 1, 

followed by QoS level 2, and repeated in the third iteration. 

Table 4.3:  Packets in Bytes with three levels of QoS for large Payload. 

Iteration Number / 

Payload (Byte) 

1 2 3 4 5 6 7 8 

First test (QoS 0) 4K 8K 16K 32K 64K 128K 256K 512K 

Second test (QoS 1) 4K 8K 16K 32K 64K 128K 256K 512K 

Third test (QoS 2) 4K 8K 16K 32K 64K 128K 256K 512K 

 

A summary of the experiment setup is presented in Table 4.4. 

 

 

 



56 
 

Table 4.4: Features of test platform. 

Publisher Raspberry Pi 4 (as client). 

Broker HiveMQ (a cloud-based or self-hosted MQTT broker). 

Subscriber Laptop computer. 

Protocol MQTT protocol.  

MQTT library Paho MQTT for Python 

Message Sizes Experiment 1: Small Payload Data ranging from 4 bytes to 512 bytes. 

 

4bytes, 8byte, 16byte, 32byte, 64byte, 128byte, 256byte, 512byte. 

 

Experiment 2: Large Payload Data ranging from 4K bytes to 512K bytes. 

 

4Kbyte, 8Kbyte, 16Kbyte, 32Kbyte, 64Kbyte, 128Kbyte, 256Kbyte, 512Kbyte.  

    

QoS Levels QoS 0, QoS 1, and QoS 2. 

 

Metrics Latency: The time taken for a message to be sent from the publisher to the subscriber 

via the HiveMQ broker. 

 

Packet 

Capture tool 

Wireshark 

 

Experiment 3: Broker Software for Payload Data ranging from 4 bytes to 512 bytes.  

The researchers recommended several MQTT brokers. Selecting the appropriate broker is another 

critical factor when implementing an MQTT system. In this experiment, the goal is to learn more 

about the strengths and weaknesses of a message broker and to evaluate the performance of two 

open-source brokers (Mosquitto and HiveMQ), which are the most popular among developers at 

QoS level 0, by examining the latency using the MQTT protocol and studying the effects of 

payload on a message's transmission time. For better MQTT results, the measured latency is 

performed for QoS Level 0. 

 



57 
 

Table 4.5: Features of test platform. 

Publisher Raspberry Pi 4 (as client). 

Broker Mosquitto. 

HiveMQ. 

Subscriber Laptop computer. 

Protocol MQTT protocol.  

MQTT library Paho MQTT for Python 

Message Sizes Small (4 bytes to 512 bytes.)  

QoS Levels QoS Level: 0 (at-most-once delivery, no ACK). 

Metrics Latency 

Packet 

Capture tool 

Wireshark 

 

Experiment 4: Packet loss measurements for small Payload Data ranging from 4 bytes to 512 

bytes.  

Publisher Raspberry Pi 4 (as client). 

Broker HiveMQ. 

Subscriber Laptop computer. 

Protocol MQTT protocol.  

MQTT library Paho MQTT for Python 

Message Sizes Small (4 bytes to 512 bytes.)  

QoS Levels QoS Level: 0, 1, 2 

Metrics Packet Loss 

Packet 

Capture tool 

Wireshark 

# of messages 1000 

 

In this experiment, one thousand messages were sent for each payload size, 4 bytes, 8 bytes, and 

so on, to analyze message loss in a wireless network environment. The test was repeated using 

QoS levels 0, 1, and 2." 



58 
 

Chapter 5: Results and Discussions  

5.1 Introduction 

Chapter 4 presents the experimental test platform developed to evaluate the performance of the 

MQTT protocol. This platform enabled systematic testing under various conditions, and the results 

obtained from the experiments are discussed and analyzed in detail within this chapter. 

The message payload and QoS will both be used as criteria to test latency.  The experiments were 

conducted according to the scenarios presented in Chapter 4, and then a comparison of the 

performance of each case was conducted. The impact of varying the payload size and reliability 

levels on the performance of the MQTT protocol was studied. The performance measurement used 

to evaluate the scenarios is latency, defined as the time required to publish data from the Raspberry 

Pi to the broker. 

5.2 Results and Findings 

The following result is based on using the Raspberry Pi 4 with onboard Wi-Fi to send data, acting 

as the publisher, while online HiveMQ was the broker, and the protocol used was MQTT. Latency 

was determined by the time taken for the data to reach the MQTT broker from the source device. 

Finally, the data was analyzed to study the results. The experiment was implemented, and the 

performance of the protocol was evaluated for all the QoS levels and various data sizes. 

Several network scenarios were defined based on different QoS levels, through which the best-

case scenario with extremely minimal latency was identified to be achieved. The theoretical 

maximum length of an MQTT packet of 268, 435 ,456 bytes, equivalent to 256 MB, was taken 

into account. The actual topic string has a maximum length of 65536 bytes. This is a limitation set 

by the MQTT specifications. The timestamps included in the published messages and deducted 

from the subscriber side timestamps. The Raspberry Pi recorded a timestamp before sending, and 

HiveMQ recorded the arrival time; then, we calculated the difference between the two readings as 

a latency.  

Latency Calculation:       Latency = Broker Receive Time – Raspberry Pi Send Time 

Tables 5.1 and 5.2 show the results taken to evaluate the latency between the publisher and broker 

by increasing the payload across different QoS levels, Figure 5.1. Figure 5.2 represents the diagram 



59 
 

results; it is a graph that compares the times influenced by payloads and QoS levels in a wireless 

network environment. 

5.2.1 Latency findings for MQTT QoS 0 / QoS 1 / QoS 2 

Major results for Experiment 1: Small Payload Data ranging from 4 bytes to 512 bytes.  

Table 5.1: MQTT Latency (ms)for small payload 

MQTT Latency (ms) 

                                               Small Payload (Bytes) 

QoS 4 8 16 32 64 128 256 512 

0 42.5 49.3 60.5 62 69 71 73.5 74 

1 159 150 181 189 212 280 313 412 

2 281 289 298 317 340 421 456 439 

 

 

  

 

 

 

 

 

 

 

 

Figure 5.1:  Plot latency vs. payload size with three levels of QoS. (4 Byte – 512 Byte) 

 

 

0

50

100

150

200

250

300

350

400

450

500

4 8 16 32 64 128 256 512

La
te

n
cy

 (
m

s)

Message Payload (Bytes)

QoS 0 QoS 1 QoS 2



60 
 

Major results for Experiment 2: Large Payload Data ranging from 4K bytes to 512K bytes.  

 

Table 5.2: MQTT Latency (ms)for large payload 

MQTT Latency (ms) 

                                               Large Payload (Bytes)  

QoS 4K 8K 16K 32K 64K 128K 256K 512K 

0 161 260 281 382 471 485 486 500 

1 609 651.5 659 675 678 691.9 698.2 730 

2 620 660 673 682 687 698 699 780 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2:  Plot latency vs. payload size for each QoS level. (4 KByte – 512 Kbyte) 

 

 

0

100

200

300

400

500

600

700

800

900

4K 8K 16K 32K 64K 128K 256K 512K

La
te

n
cy

 (
m

s)

Message Payload (Bytes)

QoS 0 QoS 1 QoS 2



61 
 

In Figure 5.1, latency is measured for MQTT with QoS 0, QoS 1, and QoS 2 concerning changing 

4byte, 8byte, 16byte, 32byte, 64byte, 128byte, 256byte, and 512byte sizes. In Figure 5.2, latency 

is measured for MQTT with QoS 0, QoS 1, and QoS 2 concerning changing 4-Kbyte, 8-Kbyte, 16-

Kbyte, 32-Kbyte, 64-Kbyte, 128-Kbyte, 256-Kbyte, and 512-Kbyte sizes. 

Figures 5.1 and 5.2 show the message latency results for the MQTT protocol across different 

payload sizes and Quality of Service (QoS) levels. The data shows the relationship between 

payload size, latency, and QoS level. When payload size increases, message latency also increases, 

but the extent of increase varies across different QoS levels. QoS 0 has the lowest latency, as 

messages are transmitted without acknowledgment, resulting in minimal transmission overhead. 

QoS 1 introduces a slight increase in latency due to its at-least-once delivery mechanism, which 

requires acknowledgment from the subscriber. QoS 2 shows the highest latency among all levels, 

as it employs an exactly-once delivery process involving multiple handshake messages to 

guarantee message delivery without duplication. These findings highlight the trade-off between 

reliability and performance in MQTT communication, where higher QoS levels ensure greater 

reliability at the cost of increased latency. 

Major results for Experiment 3: The performance of two brokers (Mosquitto and HiveMQ) 

     Table 5.3: MQTT Latency (ms) of cloud-based broker HiveMQ and Mosquitto 

 Payload size 

Payload 

(Bytes) 

4Byte 8Byte 16Byte 32Byte 64Byte 128Byte 256Byte 512Byte 

HiveMQ 42.5 49.3 60.5 62 69 71 73.5 74 

Mosquitto 50 55.2 66.5 68 75 77 78 81 

 

The results are shown in table 5.3, as can be observed in Figure 5.3, HiveMQ often has lower 

latency compared to Mosquitto broker. 



62 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: MQTT Latency over cloud-based broker HiveMQ and Mosquitto 

Major results for Experiment 4: Packet loss measurements for small Payload Data ranging from 

4 bytes to 512 bytes.  

Packet loss is defined as the number of data packets that fail to reach their destination relative to 

the total number of packets sent. It is typically expressed as a percentage. In our experiment, Packet 

loss was calculated by analyzing the MQTT traffic captured with Wireshark. The number of 

missing or unacknowledged messages was treated as lost packets. This method allowed for 

accurate packet loss detection across various payload sizes and QoS levels.  

 

 

Table 5.4 shows the results of MQTT packet loss regarding QoS 0; Table 5.5 shows the results 

of MQTT packet loss regarding QoS 1; Table 5.6 shows the results of MQTT packet loss 

regarding QoS 2. 

 

 

0

10

20

30

40

50

60

70

80

90

4 8 16 32 64 128 256 512

La
te

n
cy

 (
m

s)

Message Payload (Bytes)

HiveMQ Latency Mosquitto Latency



63 
 

Table 5.4: Results of MQTT packet loss vs payload for QoS 0 

QoS 0 

Payload 4B 8B 16B 32B 64B 128B 256B 512B 

sent 1000 1000 1000 1000 1000 1000 1000 1000 

received 920 940 935 930 928 933 941 945 

Packet 

Loss 

8% 6% 6.5% 7% 7.2% 6.7% 5.9% 5.5% 

 

Table 5.5: Results of MQTT packet loss vs payload for QoS 1 

 

QoS 1 

Payload 4B 8B 16B 32B 64B 128B 256B 512B 

sent 1000 1000 1000 1000 1000 1000 1000 1000 

received 995 996 995 997 992 995 993 995 

Packet 

Loss 

0.5 % 0.4% 0.5% 0.3% 0.8% 0.5% 0.7% 0.5% 

 

Table 5.6: Results of MQTT packet loss vs payload for QoS 2 

QoS 2 

Payload 4B 8B 16B 32B 64B 128B 256B 512B 

sent 1000 1000 1000 1000 1000 1000 1000 1000 

received 999 998 998 998 999 997 996 999 

Packet 

Loss 

0.1% 0.2% 0.2% 0.2% 0.1% 0.3% 0.4% 0.1% 

 



64 
 

 

 

 

 

 

 

 

 

      Figure 5.4: MQTT Packet loss measurements with three QoS analysis results 

5.3 Discussion about the results 

 

A discussion of the results from section 5.2 was presented in this section. To summarize, the 

MQTT packet delivery was evaluated using a real wireless platform, which was composed of three 

layers: two clients and one message broker (a subscribe client, a broker, and a publish client). 

MQTT supports three QoS levels that ensure the delivery of messages reliably. In order to conduct 

this performance evaluation and study the behavior of the MQTT protocol, the latency and packet 

loss were examined, and packets were recorded while messages were sent with different payload 

sizes across three different QoS levels. 

The first scenario is to employ the MQTT protocol with a small payload ranging from 4 bytes to 

512 bytes, varying the quality-of-service QoS 0, QoS 1, and QoS 2. This example could be a 

simulation of a traffic monitoring system, which does not require a large payload of data. Examples 

of the amount of payload are vehicle count and timestamp, which are small payloads (20–100 

bytes). 

In the second scenario, large MQTT payload data ranging from 4K bytes to 512K bytes are sent 

using varying QoS 0, QoS 1, and QoS 2. This example could be a simulation of a smart metering 

system, which requires a large payload of data. Examples of the amount of payload are encrypted 

0

2

4

6

8

10

4B 8B 16B 32B 64B 128B 256B 512B

Pa
ck

et
 L

o
ss

 (
%

) 

QoS 0 QoS 1 QoS 2



65 
 

usage data logs, which are large payloads (4KB to 1MB). Of course, if the data is collected for a 

certain period, for example, an hour, then it is sent in a batch file 

The metric analyzed is the latency, the latency measurements showed that for the tests carried out 

on the MQTT Protocol, as can be seen in Figures 5.1 and 5.2, each figure presents the message 

latency results for various payloads of the MQTT protocol, it shows how payload size, latency, 

and QoS level relate to each other, for example the latency for a 64 Bytes message is lower than 

the latency for a message of 128 Bytes for all types of QoS. QoS 0 has the shortest transmission 

time, followed by QoS 1, then QoS 2. QoS 0 provides minimal latency per packet because it only 

sends once, and QoS 1 has a slightly higher latency since it delivers at least once. With its exactly 

once delivery, QoS 2 has the highest latency because it sends a series of messages and uses a 4-

way handshake to ensure the arrival of the message. The latency increases linearly with the payload 

size from 4 bytes to 512 bytes. It increased from 42.5 ms for 4 bytes to 74 ms for 512 bytes in QoS 

0. The latency increased from 159 ms for 4 bytes to 412 ms for 512 bytes in QoS 1. The latency 

increased from 281 ms for 4 bytes to 439 ms for 512 bytes in QoS 2. Table 5.7 summarizes the 

effect of payload size vs QoS on latency for MQTT.  

Table 5.7: effect of payload size vs QoS ON Latency for MQTT  

Payload size QoS 0 QoS 1 QoS 2 

Small (4Byte-512Byte) Lowest latency Low latency Moderate latency 

Large (4KByte-512KByte) Moderate latency High latency Very high latency 

 

Higher QoS levels generally increase reliability but also introduce extra latency due to the 

additional handshakes. The latency appears to increase proportionally with increasing QoS levels 

and payload size; in other words, there is a direct proportional relationship between the time and 

payload size across all the QoS levels. 

So, it was expected that the lower the number of milliseconds and latency, the more efficient the 

network would behave. Therefore, the user will have a better experience, and larger payloads will 

naturally result in higher latency, especially in low-bandwidth environments. As a result, consider 

testing with varying payload sizes. It was found that the use of QoS 1 is best balanced between 



66 
 

reliability and speed, considering the reduction of the payload to achieve the lowest possible 

latency time.  

Based on the related works discussed in section 2.2, it was found that the performance of the 

MQTT protocol strongly depends on the Quality of Service (QoS) profile, as mentioned in 

[(Mijovic et al., 2016), (Marques et al., 2018)]. The research results are somewhat consistent with 

the results of previous studies.  

Figure 5.3 Mosquitto shows lower latency in QoS 0 and small payloads due to its lightweight 

nature; HiveMQ exhibits slightly higher latency. When comparing the performance of Mosquitto 

and HiveMQ brokers, several factors come into play, such as latency and message loss. HiveMQ 

is better with large payloads than Mosquitto. These results are consistent with many previous 

studies, including the study of (Jaloudi, 2019) and the study (Mishra & Reddy, 2024). 

Latency is an important factor that is impacted by the message size in many types of IoT wireless 

systems, and its effect will vary depending on the application scenario. Reducing latency in IoT 

design improves performance and improves the user experience for these applications. Minimizing 

latency is one of the primary concerns when designing an Internet of Things (IoT) system. 

A protocol’s performance can be evaluated using a variety of metrics, each reflecting different 

aspects of system suitability for specific use cases related to smart city applications. These metrics 

can be grouped into three main categories: the first category includes Time-Based Metrics include 

Latency (Delay), which is the time it takes for the packet to travel from its starting device to its 

destination device, Response Time, Round-Trip Time (RTT), and Jitter. The second category is 

Packet and Transmission Metrics: This category focuses on the structure of data transmission, 

including payload size, protocol overhead, packet loss, and throughput. The third category is 

Energy metrics, including energy consumption: the amount of energy consumed during message 

transmission and reception. Bandwidth Efficiency: The ratio of useful data to total transmitted 

data. 

 



67 
 

Chapter 6: Conclusion 

This thesis is a research effort that helped to develop a better understanding of IoT messaging 

protocols and gain a deeper understanding of implementing these protocols in smart cities. A 

review of the Internet of Things and how it relates to smart cities, including the definition and 

fundamentals of IoT and its architecture, was presented in this thesis. The smart city concept was 

first presented, and important terms of the Internet of Things were discussed. The IoT application 

layer protocols were presented, recent works related to this thesis topic were discussed, and then a 

comparative analysis of the application layer protocols was conducted. 

Through a review of scientific research papers and a comparative theoretical analysis of various 

IoT application layer protocols, five protocols were presented and compared conceptually in terms 

of different performance metrics. These protocols are MQTT, CoAP, XMPP, AMQP, and HTTP. 

Among the conclusions drawn from this extensive review, it was found that various factors can 

influence a protocol evaluation; however, it might be challenging to provide an accurate 

description of performance. 

Latency is one of the most important factors to study and evaluate when comparing different 

communication protocol parameters, especially in the world of IoT applications. As a result, care 

must be taken to minimize latency between IoT nodes. Latency varies depending on the IoT 

protocol; however, the general conclusion that can be drawn concerning the applicable scenario is 

that all IoT application layer protocols are of appropriate latency, and real-time and high-

performance applications require a low-latency protocol. Protocol, payload size, and quality of 

service are all crucial test platform factors to consider while planning and building an IoT system. 

In summary, the evaluation of protocol performance during the implementation of the IoT system 

is an important factor that needs to be taken into account.  

The results reveal that IoT application layer protocols were specifically built for M2M 

communication. The challenge of choosing the right IoT protocol for the right application requires 

comprehensive planning and analysis of the problem domains that need to be solved. For example, 

the application of IoT in designing traffic monitoring within smart cities completely differs from 

the application of IoT for medical purposes. No singular IoT protocol solution can be the best 

choice for all types of IoT systems. Choosing the right real-time protocol depends largely on the 

needs of a given developer and their IoT devices. 



68 
 

Based on the theoretical analysis and comparison of various IoT communication protocols, this 

study concludes that MQTT, which is a binary protocol, represents a balanced compromise among 

the protocols studied during this work. This thesis identifies MQTT as a balanced and practical 

solution. It focuses on MQTT because it combines the lightweight nature and publish-subscribe 

paradigm with the low overhead needed for constrained environments. The method of 

communication is basic; messages can be exchanged at any time, and it ensures message reliability 

by providing three QoS levels. The publish-subscribe model enables asynchronous, decoupled 

communication between devices, making it highly suitable for dynamic and large-scale smart city 

applications.  

During the period from 2016 to 2024, which serves as the timeframe for the literature review 

conducted in this study, MQTT has experienced a significant rise in adoption across the IoT 

domain. Multiple studies and industry reports confirm that MQTT consistently ranks among the 

top three most widely used messaging protocols for IoT applications, making it a preferred choice 

for both researchers and industry practitioners working in smart city and real-time data 

environments. But like any protocol, MQTT has limitations, and it might not be the best option in 

every IoT application. Choosing the most appropriate protocol depends on the scenario and 

requirements.  

Finally, this research work can significantly support IoT application developers in making 

informed decisions while selecting communication protocols. As a result of our study, the MQTT 

standard is suitable for Internet of Things applications. 

6.1 Future work 

Future research should focus on understanding how protocols scale among nodes, gateways, 

brokers, and applications. In this study, the researcher did not address the issue of security and 

protection, or any predictive analytics technologies within IoT protocols, which are crucial and 

recommended for future research. 

 

 



69 
 

References 

 

Al Mansoori, S. (2021, February). Challenges and New Research Directions to the Development of 

Smart Cities: Systems-of-Systems Perspective. In Journal of Physics: Conference 

Series (Vol. 1828, No. 1, p. 012136). IOP Publishing. 

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of 

things: A survey on enabling technologies, protocols, and applications. IEEE 

communications surveys & tutorials, 17(4), 2347-2376. 

Al-Masri, E., Kalyanam, K.R., Batts, J., Kim, J., Singh, S., Vo, T., & Yan, C. (2020). Investigating 

Messaging Protocols for the Internet of Things (IoT). IEEE Access, 8, 94880-94911. 

Alobaidy, Haider & Mandeep, J. & Behjati, Mehran & Nordin, Rosdiadee & Abdullah, N.F.. (2022). 

Wireless Transmissions, Propagation and Channel Modelling for IoT Technologies: 

Applications and Challenges. IEEE Access. 10. 1-1. 10.1109/ACCESS.2022.3151967. 

Al-Qaseemi, S. A., Almulhim, H. A., Almulhim, M. F., & Chaudhry, S. R. (2016). IoT architecture 

challenges and issues: Lack of standardization. https://doi.org/10.1109/ftc.2016.7821686 

Amazon Web Services, Inc. (2024). Throughput vs Latency - Difference Between Computer Network 

Performances. Retrieved March 5, 2024  from https://aws.amazon.com/compare/the-

difference-between-throughput-and-latency/.  

Andy, Syaiful & Rahardjo, Budi & Hanindhito, Bagus. (2017). Attack scenarios and security 

analysis of MQTT communication protocol in IoT system. 1-6. 

10.1109/EECSI.2017.8239179. 

https://aws.amazon.com/compare/the-difference-between-throughput-and-latency/
https://aws.amazon.com/compare/the-difference-between-throughput-and-latency/


70 
 

Bansal, S., & Kumar, D. (2019, July). IoT application layer protocols: performance analysis and 

significance in smart city. In 2019 10th international conference on computing, 

communication and networking technologies (ICCCNT) (pp. 1-6). IEEE. 

Bansal, S., & Kumar, D. (2020). IoT ecosystem: A survey on devices, gateways, operating systems, 

middleware and communication. International Journal of Wireless Information 

Networks, 27(3), 340-364. 

Bayılmış, C., Ebleme, M. A., Çavuşoğlu, N., Küçük, K., & Sevin, A. (2022). A survey on 

communication protocols and performance evaluations for Internet of Things. Digital 

Communications and Networks, 8(6), 1094–1104. https://doi.org/10.1016/j.dcan.2022.03.013 

Becker, Markus. (2013). A cheatsheet for the Constrained Application Protocol (CoAP). 

Bellini, P., Nesi, P., & Pantaleo, G. (2022). IoT-enabled smart cities: A review of concepts, 

frameworks and key technologies. Applied Sciences, 12(3), 1607. 

Bluetooth® Technology. (2024). Bluetooth® Technology Website. Retrieved January 3, 2024 

from https://www.bluetooth.com/.                  

Chandramouli, V. (2002). A Detailed Study on Wireless LAN Technologies. 

Cisco, (2014). “Fast Innovation requires Fast IT,” cicso.com.  Retrieved December 30, 2023 from 

https://www.cisco.com/c/dam/global/en_ph/assets/ciscoconnect/pdf/ 

bigdata/jim_green_cisco_connect.pdf.  

Cohen, G. S. (2023, July 17). The 6 Key Elements of IoT Cellular Connectivity - FirstPoint. 

FirstPoint. https://www.firstpoint-mg.com/blog/the-6-key-elements-of-iot-cellular-

connectivity/ 

https://www.bluetooth.com/
https://www.firstpoint-mg.com/blog/the-6-key-elements-of-iot-cellular-connectivity/
https://www.firstpoint-mg.com/blog/the-6-key-elements-of-iot-cellular-connectivity/


71 
 

Cope, B. S. (2022, July 6). Beginners Guide To The MQTT Protocol. |. Retrieved December 17, 

2023 from http://www.steves-internet-guide.com/mqtt/.   

       Corak, B. H., Okay, F. Y., Guzel, M., Murt, S., & Ozdemir, S. (2018). Comparative analysis of IoT 

communication       protocols. 2022 International Symposium on Networks, Computers and 

Communications (ISNCC), 1–6.     https://doi.org/10.1109/isncc.2018.8530963 

Craggs, I. (2024). MQTT vs HTTP for IoT. Retrieved March 17, 2024 from 

https://www.hivemq.com/article/mqtt-vs-http-protocols-in-iot-iiot. 

Dameri, R. P. (2013). Searching for smart city definition: a comprehensive proposal. International 

Journal of computers & technology, 11(5), 2544-2551.Dash, Biswajit & Peng, Jun. (2022). 

Zigbee Wireless Sensor Networks: Performance Study in an Apartment-Based Indoor 

Environment. Journal of Computer Networks and Communications. 2022. 1-14. 

10.1155/2022/2144702. DOI: https://doi.org/10.54808/JSCI.21.04.1 

Dragičević, T., Siano, P., & Prabaharan, S. S. (2019). Future generation 5G wireless networks for 

smart grid: A comprehensive review. Energies, 12(11), 2140. 

Ed, M. B. (2022, June 6). RFC 9114: HTTP/3. IETF Datatracker. Retrieved March 18, 2024 from 

https://datatracker.ietf.org/doc/html/rfc9114.  

Eggly, G. M., Finochietto, M., Dimogerontakis, E., Santos, R. M., Orozco, J., & Meseguer, R. 

(2018, October). Real-time primitives for coap: Extending the use of iot for time constraint 

applications for social good. In Proceedings (Vol. 2, No. 19, p. 1257). MDPI. 

Embien Technologies::Blog. (2023). Embien. Retrieved January 18, 2024 from  

https://www.embien.com/blog/introduction-to-lora-technology. 

http://www.steves-internet-guide.com/mqtt/
https://www.hivemq.com/article/mqtt-vs-http-protocols-in-iot-iiot
https://doi.org/10.54808/JSCI.21.04.1
https://datatracker.ietf.org/doc/html/rfc9114
https://www.embien.com/blog/introduction-to-lora-technology


72 
 

Ericsson, A. (2016). Cellular networks for massive IoT-enabling low power wide area 

applications. no. January, 1-13. 

Ertürk, M. A., Aydın, M. A., Büyükakkaşlar, M. T., & Evirgen, H. (2019). A survey on LoRaWAN 

architecture, protocol and technologies. Future internet, 11(10), 216. 

Extensible messaging and presence protocol (XMPP). (2023). XMPP | The universal messaging 

standard.  Retrieved December 18, 2023 from  https://xmpp.org/rfcs/rfc3920.html. 

Gerber, A., & Romeo, J. Connecting all the things in the Internet of Things IBM Developer, 

2020. URL: https://developer. ibm. com/technologies/iot/articles/iot-lp101-connectivity-

network-protocols/(accessed: 30.03. 2021). 

Gheorghe-Pop, I. D., Kaiser, A., Rennoch, A., & Hackel, S. (2020, December). A performance 

benchmarking methodology for MQTT broker implementations. In 2020 IEEE 20th 

International Conference on Software Quality, Reliability and Security Companion (QRS-

C) (pp. 506-513). IEEE. 

Guth, J., Breitenbücher, U., Falkenthal, M., Leymann, F., & Reinfurt, L. (2016, November). 

Comparison of IoT platform architectures: A field study based on a reference architecture. 

In 2016 Cloudification of the Internet of Things (CIoT) (pp. 1-6). IEEE. 

Hantrakul, K., Sitti, S., & Tantitharanukul, N. (2017, March). Parking lot guidance software based 

on MQTT Protocol. In 2017 International Conference on Digital Arts, Media and 

Technology (ICDAMT) (pp. 75-78). IEEE. 

HiveMQ Community Edition (2020). Retrieved December 10, 2023 from 

https://www.hivemq.com/blog/hivemq-ce-2020-3-released/.   

https://xmpp.org/rfcs/rfc3920.html
https://www.hivemq.com/blog/hivemq-ce-2020-3-released/


73 
 

Hofer, J., & Pawaskar, S. (2018, July). Impact of the Application Layer Protocol on Energy 

Consumption, 4G Utilization and Performance. In 2018 3rd Cloudification of the Internet of 

Things (CIoT) (pp. 1-7). IEEE. 

HTTP response status codes (2023). MDN Web Docs. Retrieved December 10, 2023 from  

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status. 

https://datatracker.ietf.org/doc/html/rfc6455.  

https://www.raspberrypi.com/documentation/computers/getting-started.html. 

ILYAS, M. (2023). Smart Cities: Challenges and Opportunities. Journal of Systemics, Cybernetics 

and Informatics, 21(4), 1-6. 

Interoperability. (2023). Federal Communications Commission. Retrieved December 23, 2023 from 

https://www.fcc.gov/general/interoperability.  

IoT connected devices worldwide 2019-2030 | Statista. (2023, July 27). Statista. Retrieved January 

22, 2024 from https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/.  

ITU Internet Reports 2005: The Internet of Things. (2023). ITU. Retrieved February 21, 2024 from 

https://www.itu.int/pub/S-POL-IR.IT-2005/e. 

Jaloudi, S. (2019). MQTT for IoT-based applications in smart cities.  المجلة الفلسطينية للتكنولوجيا والعلوم

 .(2) ,التطبيقية

      Jaloudi, S. (2019c). A Bridge between Legacy Wireless Communication Systems and Internet of 

Things. Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 7(2). 

https://doi.org/10.11591/ijeei.v7i2.979 

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://datatracker.ietf.org/doc/html/rfc6455
https://www.fcc.gov/general/interoperability
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.itu.int/pub/S-POL-IR.IT-2005/e


74 
 

Kanellopoulos, D., Sharma, V. K., Panagiotakopoulos, T., & Kameas, A. (2023). Networking 

architectures and protocols for IoT applications in smart cities: Recent developments and 

perspectives. Electronics, 12(11), 2490. 

Kassem, I., & Sleit, A. (2020, June). Elapsed time of IoT application protocol for ECG: a 

comparative study between CoAP and MQTT. In 2020 International Conference on 

Electrical, Communication, and Computer Engineering (ICECCE) (pp. 1-6). IEEE. 

Kayal, P., & Perros, H. (2017, March). A comparison of IoT application layer protocols through a 

smart parking implementation. In 2017 20th Conference on Innovations in Clouds, Internet 

and Networks (ICIN) (pp. 331-336). IEEE. 

Khalil, K., Elgazzar, K., & Bayoumi, M. (2018, December). A comparative analysis on resource 

discovery protocols for the internet of things. In 2018 IEEE Global Communications 

Conference (GLOBECOM) (pp. 1-7). IEEE. 

Kumar, N., & Jamwal, P. (2021). Analysis of modern communication protocols for IoT 

applications. Karbala International Journal of Modern Science, 7(4), 14. 

Lai, C. S., Jia, Y., Dong, Z., Wang, D., Tao, Y., Lai, Q. H., ... & Lai, L. L. (2020). A review of 

technical standards for smart cities. Clean Technologies, 2(3), 290-310. 

Light, R. A. (2017). Mosquitto: server and client implementation of the MQTT protocol. Journal of 

Open Source Software, 2(13), 265.Margelis, George & Piechocki, R.J. & Kaleshi, Dritan & 

Thomas, Paul. (2015). Low Throughput Networks for the IoT: Lessons learned from 

industrial implementations. 181-186. 10.1109/WF-IoT.2015.7389049. 



75 
 

Marques, P., Manfroi, D., Deitos, E., Cegoni, J., Castilhos, R., Rochol, J., ... & Kunst, R. (2019). An 

IoT-based smart cities infrastructure architecture applied to a waste management 

scenario. Ad Hoc Networks, 87, 200-208. 

Martikkala, A., Lobov, A., Lanz, M., & Ituarte, I. F. (2021). Towards the interoperability of IoT 

platforms: a case study for data collection and data storage. IFAC-PapersOnLine, 54(1), 

1138-1143. 

Mehmood, Y., Ahmad, F., Yaqoob, I., Adnane, A., Imran, M., & Guizani, S. (2017). Internet-of-

things-based smart cities: Recent advances and challenges. IEEE Communications 

Magazine, 55(9), 16-24. 

Mijovic, S., Shehu, E., & Buratti, C. (2016, September). Comparing application layer protocols for 

the Internet of Things via experimentation. In 2016 IEEE 2nd International Forum on 

Research and Technologies for Society and Industry Leveraging a better tomorrow 

(RTSI) (pp. 1-5). IEEE. 

Mishra, M., & Reddy, S. R. N. (2024). Performance assessment and comparison of lightweight d2d-

iot communication protocols over resource constraint environment. Multimedia Tools and 

Applications, 1-30. 

Mosquitto. (2022). Eclipse Mosquitto Retrieved February 11, 2024 from  https://mosquitto.org/. 

MQTT Version 3.1.1. (2023). specification of the Open Document Format. Retrieved February 11, 

2024 from  https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.  

MQTT Version 5.0. (2023). Retrieved February 11, 2024 from https://docs.oasis-

open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html. 

https://mosquitto.org/
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html


76 
 

Naik, N. (2017, October). Choice of effective messaging protocols for IoT systems: MQTT, CoAP, 

AMQP and HTTP. In 2017 IEEE international systems engineering symposium (ISSE) (pp. 

1-7). IEEE. 

Noreen, U., Bounceur, A., & Clavier, L. (2017, May). A study of LoRa low power and wide area 

network technology. In 2017 International Conference on Advanced Technologies for Signal 

and Image Processing (ATSIP) (pp. 1-6). IEEE. 

Nwankwo, E., David, M., & Onwuka, E. N. (2024). Integration of MQTT-SN and CoAP protocol 

for enhanced data communications and resource management in WSNs. Bulletin of Electrical 

Engineering and Informatics, 13(3), 1613-1620.Palmese, Fabio & Longo, Edoardo & 

Redondi, Alessandro & Cesana, Matteo. (2021). CoAP vs. MQTT-SN: Comparison and 

Performance Evaluation in Publish-Subscribe Environments. 153-158. 10.1109/WF-

IoT51360.2021.9595725. 

Paolone, G., Iachetti, D., Paesani, R., Pilotti, F., Marinelli, M., & Di Felice, P. (2022). A holistic 

overview of the Internet of Things ecosystem. IoT, 3(4), 398-434. 

Patti, G., Leonardi, L., Testa, G., & Bello, L. L. (2024). PrioMQTT: A prioritized version of the 

MQTT protocol. Computer Communications, 220, 43-51. 

Qiu, T., Chen, N., Li, K., Atiquzzaman, M., & Zhao, W. (2018). How can heterogeneous internet of 

things build our future: A survey. IEEE Communications Surveys & Tutorials, 20(3), 2011-

2027. 

Raj, A., & Shetty, S. D. (2022). IoT eco-system, layered architectures, security and advancing 

technologies: A comprehensive survey. Wireless Personal Communications, 122(2), 1481-

1517. 



77 
 

Raspberry. (2024) Raspberry Pi Documentation. Retrieved January 7, 2024 from 

RFC 6455: The WebSocket Protocol. (2011). IETF Datatracker. Retrieved March 5, 2024 from 

RFC 7252: The Constrained Application Protocol (CoAP). (2014, June 26). IETF Datatracker. 

Retrieved March 5, 2024  from https://datatracker.ietf.org/doc/html/rfc7252.  

Round Trip Time (RTT) - MDN Web Docs Glossary: Definitions of Web-related terms | MDN. 

(2023, July 31). MDN Web Docs. Retrieved March 5, 2024  from 

https://developer.mozilla.org/en-US/docs/Glossary/Round_Trip_Time.  

Santos, M. G. D., Ameyed, D., Petrillo, F., Jaafar, F., & Cheriet, M. (2020). Internet of Things 

architectures: A comparative study. arXiv preprint arXiv:2004.12936. 

Schiller, E., Aidoo, A., Fuhrer, J., Stahl, J., Ziörjen, M., & Stiller, B. (2022). Landscape of IoT 

security. Computer Science Review, 44, 100467. 

Sikic, Lucija & Janković, Jasna & Afric, Petar & Silic, Marin & Ilic, Zeljko & Pandzic, Hrvoje & 

Zivic, Marijan & Dzanko, Matija. (2020). A Comparison of Application Layer 

Communication Protocols in IoT-enabled Smart Grid. 83-86. 

10.1109/ELMAR49956.2020.9219030. 

Sikimić, M., Amović, M., Vujović, V., Suknović, B., & Manjak, D. (2020, March). An overview of 

wireless technologies for IoT network. In 2020 19th International Symposium INFOTEH-

JAHORINA (INFOTEH) (pp. 1-6). IEEE. 

Spohn, M. A. (2022). On MQTT scalability in the Internet of Things: issues, solutions, and future 

directions. Journal of Electronics and Electrical Engineering, 4-4. 

https://datatracker.ietf.org/doc/html/rfc7252
https://developer.mozilla.org/en-US/docs/Glossary/Round_Trip_Time


78 
 

Sultana, T., & Wahid, K. A. (2019). Choice of application layer protocols for next generation video 

surveillance using internet of video things. IEEE Access, 7, 41607-41624. 

Tamizan, Mohd. (2020). Latency Issues in Internet of Things: A Review of Literature and Solution. 

International Journal of Advanced Trends in Computer Science and Engineering. 9. 83-91. 

10.30534/ijatcse/2020/1291.32020. 

Tao, D. (2024.). MQTT in Python with Paho Client: Beginner’s Guide 2024. www.emqx.com. 

Retrieved February 11, 2024 from https://www.emqx.com/en/blog/how-to-use-mqtt-in-

python. 

Team, H. (2024, February 20). What is MQTT Quality of Service (QoS) 0,1, & 2? – MQTT 

Essentials: Part 6. Retrieved March 5, 2024  from https://www.hivemq.com/blog/mqtt-

essentials-part-6-mqtt-quality-of-service-levels/.  

Tran, K. T. M., Pham, A. X., Nguyen, N. P., & Dang, P. T. (2024). Analysis and Performance 

Comparison of IoT Message Transfer Protocols Applying in Real Photovoltaic 

System. International Journal of Networked and Distributed Computing, 1-13. 

Tsvetanov, F. A., & Pandurski, M. N. (2022). Selection of Protocols for Integration of Sensory Data 

Networks in Cloud Structures. Int. J. Online Biomed. Eng., 18(9), 29-40. 

Tutorialspoint. (2024). What is Payload in Computer Network?  Retrieved March 5, 2024 from 

https://www.tutorialspoint.com/what-is-payload-in-computer-network. 

Vangelista, L., Zanella, A., & Zorzi, M. (2015). Long-range IoT technologies: The dawn of LoRa™. 

In Future Access Enablers for Ubiquitous and Intelligent Infrastructures: First International 

Conference, FABULOUS 2015, Ohrid, Republic of Macedonia, September 23-25, 2015. 

Revised Selected Papers 1 (pp. 51-58). Springer International Publishing. 

https://www.emqx.com/en/blog/how-to-use-mqtt-in-python
https://www.emqx.com/en/blog/how-to-use-mqtt-in-python
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.tutorialspoint.com/what-is-payload-in-computer-network


79 
 

Wang, H., Xiong, D., Wang, P., & Liu, Y. (2017). A lightweight XMPP publish/subscribe scheme 

for resource-constrained IoT devices. IEEE Access, 5, 16393-16405. 

Whaiduzzaman, M., Barros, A., Chanda, M., Barman, S., Sultana, T., Rahman, M. S., ... & Fidge, C. 

(2022). A review of emerging technologies for IoT-based smart cities. Sensors, 22(23), 9271. 

Wi-Fi Alliance. (2023). Wi-Fi Alliance Retrieved March 5, 2024 from  https://www.wi-fi.org/ 

Wireshark User’s Guide. (2023). Wireshark User’s Guide Retrieved March 5, 2024 from 

https://www.wireshark.org/docs/wsug_html_chunked/index.html 

Wukkadada, B., Wankhede, K., Nambiar, R., & Nair, A. (2018, July). Comparison with HTTP and 

MQTT in Internet of Things (IoT). In 2018 International Conference on Inventive Research 

in Computing Applications (ICIRCA) (pp. 249-253). IEEE. 

XMPP Standards Foundation. Extensible Messaging and Presence Protocol. 2021. Retrieved August 

10, 2023 from https://xmpp.org. 

Yalçınkaya, F., Aydilek, H., Erten, M. Y., & İnanç, N. (2020). IoT based smart home testbed using 

MQTT communication protocol. International Journal of Engineering Research and 

Development, 12(1), 317-324. 

Yassein, M. B., & Shatnawi, M. Q. (2016, September). Application layer protocols for the Internet 

of Things: A survey. In 2016 International Conference on Engineering & MIS (ICEMIS) (pp. 

1-4). IEEE. 

       Yousuf, T., Mahmoud, R., Aloul, F., & Zualkernan, I. (2015). Internet of things (IoT) security: 

current status,  challenges and countermeasures. International Journal for Information Security 

Research (IJISR), 5(4), 608-616. 

https://www.wi-fi.org/
https://www.wireshark.org/docs/wsug_html_chunked/index.html
https://xmpp.org/


80 
 

Zhao, X., Askari, H., & Chen, J. (2021). Nanogenerators for smart cities in the era of 5G and 

Internet of Things. Joule, 5(6), 1391-1431. 

Zhong, X., Yao, R., Chen, C., & Zhu, Y. (2018, July). Research on Scalable Zigbee Wireless Sensor 

Network Expansion Solution. In IOP Conference Series: Materials Science and 

Engineering (Vol. 394, No. 3, p. 032071). IOP Publishing. 

Zorkany, M., Fahmy, K., & Yahya, A. (2019). Performance evaluation of iot messaging protocol 

implementation for e-health systems. International Journal of Advanced Computer Science 

and Applications, 10(11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



81 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


