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8. Final Remarks 
In this paper, we studied the Ergodocity of all the possibilities of non-
stationary Markov chains on a finite state space S. 

In theorem 7.6, we have the condition 0min )(
, >≥= εδn

n
ijji p  for 

infinitely many n’s. This condition is essential for our proof. We can restate 
this condition in an equivalent form; that is: 

There exists a sequence of integers ∞
=1)( iir such that 

1
...21 +++ iii rrr AAA is with 

non-zero entries and the minimum over all the entries is bounded from below 
(for infinitely many i’s). 
When the state space S is countable, we gave theorem 7.7 with the condition: 

Sj ∈∃ 0 such that  0,
0

≥≥∈∀ δijaSi , that is one of the columns of the 

transition matrix of the limit of the sequence of  Markov chains is uniformly 
bounded. This condition is essential for our proof  but most probably it can 
be weakened. 
Non-stationary Markov chains have many applications in the theory of 
statistical mechanics [9]-[11], [13]. Therefore, we can apply these results in 
further work, in particular in the theory of Gibbs measures and phase 
transitions. 
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The limit of the combination of the elements of a sequence of doubly 
stochastic Markov chains on an infinite state space can not be Ergodic. 
Proof 
Assume on the contrary that it is Ergodic. Then 

∑ ∑∈ ∈∞→∞→ ∞==⇒∈∀>=
Si Si j

n
ijnj

n
ijn qSiq ππ )()( lim,0lim c

ontradicting the fact that ∑ ∈
=

Si

n
ijq .1)(  

Corollary 7.5 
In theorems (4) and (6), if the limit of the sequence of the transition matrices 
A is stable from the first step; that is: 

.,,,lim jij
n

n aaSjiAA =∈∀=∞→  

Then 

.limlim...limlim 21 AAAAAAQ nn
n

nnnnn ==== ∞→∞→∞→∞→  

Proof 
.||max|)|max( )()()1()()1()(

∑∑ ∈
−

∈
− +=+≤=

Sk

n
kjkj

n
kjkj

n
ikSk

n
kj

n
ik

n
ij aaqpqq εε  

On the other hand, 
.||max|)|max( )()()1()()1()(

∑∑ ∈
−

∈
− −=−≥=

Sk

n
kjkj

n
kjkj

n
ikSk

n
kj

n
ik

n
ij aaqpqq εε  

Thus, 0||max|| )()( →≤− n
kjkj

n
ij aq ε  as .∞→n  

That is , .limlim )()(
j

n
ijn

n
ijn apq == ∞→∞→  
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In particular, .02)()(

0000
>≥→ δkjij

n
kj

n
ij aapp  So if we consider the state 

),( 00 jj then: 

1].),(),[( 00 == oijjYXq nnik
 

and by irreducibility of the combination it is correct for any state ).,( 00 ii   

Thus if  T is the first time such that ,0iYX TT == then T is finite with 

probability .1  
Next,  

)()(

0000

][

)],(,[()],(),(,),,(),[(

]),,(),[(

00

mnmn
ij

mnmniimmttij

nnij

loikoi
qqmTq

lkYXqiiYXmtiiYXq

mTlkYXq

−−

−−

=

===<≠

===
 

adding out l gives )(

0
][],[ mn

ijnij ki
qmTqmTkXq −====  

adding out k gives )(][],[ mn
liijnij o

qmTqmTlYq −====   

take lk = and add over nm ,...,2,1=  

 
][],[][],[][

],[],[

nTqnTkYqnTqnTkXqkXq

nTkYqnTkXq

ijnijijnijnij

nijnij

>+≤==>+≤=≤=⇒

≤==≤=⇒

  

Thus ].[][][ nTqkYqkXq ijnijnij >+=≤=   (13) 

By similar argument we get, 

].[][][ nTqkXqkYq ijnijnij >+=≤=    (14)   

Inequalities (13) and (14) ][|| )()( nTqqq ij
n

jk
n

ik >≤−⇒  

Since T is finite with probability 0||lim1 )()( =−⇒ ∞→
n

jk
n

ikn qq  

This means that the combination is independent of the initial state. 

Next, 0)(

0
>≥ n

n
ijq δ since .0>→ δδn  

Thus by irreducibility of the combination, Skq n
ikn ∈∀>∞→ ,0lim )( . 

Hence, the limit of the combination exists and Ergodic (by the same 
argument of the finite case, replacing minimum by infimum and maximum 
by supremum, the limit is independent of n ). 
Corollary  7.4 
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Hence .,,
1

lim )( Sji
N

q n
ijn ∈∀=∞→  

Theorem 7.7 

Assume we have a sequence of Markov chains on a countable state space S , 

whose limit is an Ergodic Markov chain. Assume that Sj ∈∃ 0  such that 

0,
0

≥≥∈∀ δijaSi , where Sjiija ∈,][ are the entries of the transition 

matrix of the limit of the sequence, say .A Then the limit of the combination 
of the elements of this sequence exists and Ergodic . 

Proof 

Let ∞
=1)( nnA be the transition matrices of this sequence. 

Denote the transition matrix of the n-th chain by  nA  and its entries by 

Sji
n

ijp ∈,
)( ][ . 

Let  AAnn =∞→lim  and denote its entries by Sjiija ∈,][ . 

Let ....21 nn AAAQ = and denote its entries by Sji
n

ijq ∈,
)( ][ . 

Denote the entries of  nmm AAA ...21 ++  by .][ ,
)(

Sji
mn

ijq ∈
−  

Assume without loss of generality that  A is with non-zero entries and that 

sAn '  are with non-zero entries (otherwise the same argument of the finite 

case). 
We will use coupling method to prove this theorem [5]10. 
Define a coupled chain on the state space ),( SS with transition 

probabilities: 

.),()],(),(|),(),[( )()()(
11

n
jl

n
ik

n
nnnn ppklijpjiYXlkYXP ====++  

Notice that this coupled chain is irreducible (it is with non-zeros). 

Since ., )()()()(
jlik

n
jl

n
ikjl

n
jlik

n
ik aappapap →⇒→→  

                                                           
10 See Chen, 1992, p.6 
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combination exists and Ergodic. In fact, Sjiq N
n

ijn ∈∀=∞→ ,,lim 1)( , 

where N  is the cardinality of  S . 

Proof 

By the previous theorem we have Weak Ergodocity, so: 
)()()(, n
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n

j
n

ij qqSj ε+=∈∀ where 0)( →n
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On the other hand 
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Thus 0||max||lim )()()( →≤−+
∞→

n
ijj

n
ij

nm
ijn qq ε  as ., Sjn ∈∀∞→  
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Thus ).1)(1()( 21
)2()2( δδ NNrR jj −−≤−   …(10) 

Where )2()2( max ijij qR =  and )2()2( min ijij qr = . 

Next, assume that: ).1()(
1

1

)1()1(
i

n

i

n
j

n
j NrR δ−≤− ∏

−

=

−−   …(11) 

Where )1()1( max −− = n
iji

n
j qR and )1()1( min −− = n

iji
n

j qr . 

Now we want to prove that it is correct for  n . 
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where Sji
n

ijb ∈
−

,
)1( ][  are the entries of nAAA ...32 and  

)1()1( max −− = n
iji

n
j bB and )1()1( min −− = n

iji
n

j bb . 

Thus .)1()1()1()(
12

1
)()1( ∏∏

==

−=−−≤−
n

i
ii

n
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n
vj
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uj NNNqq δδδ . 

(9),(10) and (11) ).1()(
1

)()(
i

n

i

n
j

n
j NrR δ−≤−⇒ ∏

=

    …(12) 

Where )()( max n
iji

n
j qR =  and )()( min n

iji
n

j qr = . 

Hence, by the principle of mathematical induction, (6) is valid for each 
natural number  n . 

Next,   0>≥ εδi  infinitely many  0)1(
1

→−⇒ ∏
=

i

n

i

Nδ  as  .∞→n  

Hence,  Sj ∈∀  and arbitrary  Ski ∈, , we have: 

0||lim )()( =−∞→
n

kj
n

ijn qq . 

That is )(lim n
ijn q is Weak Ergodic; in other words the effect of the initial 

state wears off. 

Corollary 7.3 

In the previous theorem, if the sequence of the transition matrices is doubly 
stochastic; that is each matrix is stochastic and satisfies 

∑ ∈
∈∀=

Si

n
ij Sjp ,1)(  and ,...2,1=∀ n . Then the limit of the 
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Assume without loss of generality that for all  n ,  nA  is with non-zero 

entries (otherwise there exists  0k  such that  nA  is with non-zero entries for 

all 0kn ≥ ). 

Recall that for any stochastic matrix  A  with entries Sjiijp ∈,][  and 

minimum over all its entries δ , the following relations are valid: 

Denote the summation over  Sj ∈  satisfying vjuj pp ≥  by +
∑  and the 

summation over Sj ∈  satisfying vjuj pp <  by −
∑  for arbitrary states  u  

and  v  in  S . 

Then .011)()( =−=−∑+−∑
−+

vjujvjuj pppp    …(7) 

and since ,δNpp ujvj ≥∑+∑
−+  then : 

).1(1)( δNpppp vjujvjuj −≤∑−∑−=−∑
+−+         …(8) 

Next, we will use induction on  n  to prove that: 

∏
=

−≤−
n

i
i

n
iji

n
iji Nqq

1

)()( ).1()min(max δ   

For :1=n  

))1(1(max 1
)1(

, δ−−≤ Npijji and 

1
)1(

,min δ≤ijji p )1()min(max 1
)1()1( δNpp ijiiji −≤−⇒    

and since  11 PQ =  then )1()min(max 1
)1()1( δNpp ijiiji −≤− .  

…(9) 
For  2=n : 

∑ ∈
−+ −∑+−∑≤−=−

Sk jvkukjvkukkjvkukvjuj mqqMqqpqqqq )2()1()1()2()1()1()2()1()1()2()2( )()()()(

 

where )2()2( max ijij pM = and )2()2( min ijij pm = . 

Thus 

).1)(1())(()( 21
)2()2()1()1()2()2( δδ NNmMqqqq jjvkukvjuj −−≤−−∑≤− +  
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Thus ][),( lktslk
ij Mm αααα +++≤  where  M  is a constant. 

∑∑∑∑
= =

−+−+
+

= =
++

=≤+++≤
n

k

n

l
n

M
n

nMlkts
n
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n
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0 0

)1)(1(
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)1()1(

)1(8

0 0
)1(

),(

)1(
1

222 ][} αα
αααα

0→  as ∞→n . 

Hence 0]||)([| 0 →=>− iXnVp jj επ  as ∞→n . 

Theorem 7.6 

Assume we have an arbitrary sequence of Markov chains on a finite state 

space S  with corresponding transition matrices ∞
=1)( nnA  . Denote the entries 

of nA  by Sji
n

ijp ∈,
)( ][ . Assume that 0min )(

, >≥= εδn
n

ijji p  for 

infinitely many n’s. Then nn AAA ...lim 21∞→ is Weak Ergodic. That is  

Sj ∈∀ , Skiqq n
kj

n
ijn ∈∀=−∞→ ,,0||lim )()( , where Sji

n
ijq ∈,

)( ][  are the 

entries of ....21 nn AAAQ =  That is, the effect of the initial state wears off.  

Proof 

Let ∞
=1)( nnA be the transition matrices of this sequence. 

Denote the transition matrix of the n-th chain by nA  and its entries by 

Sji
n

ijp ∈,
)( ][ . 

Let  AAnn =∞→lim  and denote its entries by Sjiija ∈,][ . 

Let δ be the minimum over all the entries of .A  

Let N be the cardinality of S and )(
,min n

ijjin p=δ . 

Let ....21 nn AAAQ = and denote its entries by Sji
n

ijq ∈,
)( ][ . 

Assume without loss of generality that A is with non-zero entries (otherwise 

there exists  0n  such that  nA  is with non-zero entries for all  0nn ≥  since 

it is Ergodic). 
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the combination of this sequence. Then: 0]|)([| →>− επ jj nVp  as 

∞→n  , .0>∀ ε  

Proof 

Let  ,...,...,, 10 nXXX  be the random variables which form these Markov 

chains (the values of them are in S ). 

Let 1)( =nj XI if jX n = ; 0 otherwise. Then 

)}.(...)({)( 1
1

njjnj XIXInV ++=  

 Let  )(n
ijq  be the n-th step probability of the combination. 

Let  ji,  be two states in S . 

We want to prove that 0]|)([| →>− επ jj nVp  as ∞→n  , .0>∀ ε  

Notice that ∑
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m
ijnj qnEV

0
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By Chebyshev’s Inequality: 
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 )(t
ijq  stands for the probability of the combination from 1+s  to 

),max( lk . 
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n
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Hence, by the principle of mathematical induction, (6) is valid for each 
natural number  n . 

Next, δδ →n  and 0>δ   0)1(
1

→−⇒ ∏
=

i

n

i

Nδ  as  .∞→n  

So if j
n
jR π→ then j

n
jr π→ ; indeed: 

nn
j

n
j

n
kj

n
ij CrRqq α<−≤− )(|| )()()()(  

where C  is constant and .,,,10 Skji ∈∀<≤ α  That is 

.,,|| )( SjiCq n
j

n
ij ∈∀<− απ   

 
 
 
 
 
Notes: 

(1) If A has zero entries,  then there exists  0n  such that  nA is 

with non-zero entries for each  onn ≥ , so there exists  l such 

that lAAA ...21  is with non-zero entries, so we may consider 

klAAA ...21 and take the limit as  .∞→k  

(2) The limit of the combination does not depend on n , that is the 
limit exists. If we have the same transition matrix in each step, 

then )(n
jR  is non-increasing (with respect to n ) and   )( n

jr is 

non-decreasing (See for example [3]9). If we do not have the 
same transition matrix, then they are almost monotonic (since 
we have a convergent sequence of transition matrices).  

 

Corollary 7.2 

Assume we have a sequence of Markov chains on a finite state space S . 

Assume that the limit of this sequence is Ergodic. Let  )(nV j  be the average 

number of staying in state j . Let  Sjj ∈)(π  be the stationary distribution of 

                                                           
9  Billingisly,1986, p.128 
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For :1=n  

))1(1(max 1
)1(

, δ−−≤ Npijji and 

1
)1(

,min δ≤ijji p )1()min(max 1
)1()1( δNpp ijiiji −≤−⇒    
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where )2()2( max ijij pM = and )2()2( min ijij pm = . 

Thus 
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Now we want to prove that it is correct for  n . 
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  where Sji
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Remark: This theorem is proved algebraicaly, see for example [15]8. In this 
paper we introduce an analytical proof of this theorem. 

Proof 

Let ∞
=1)( nnA be the transition matrices of this sequence. Denote the transition 

matrix of the n-th chain by  nA  and its entries by Sji
n

ijp ∈,
)( ][ . 

Let  AAnn =∞→lim  and denote its entries by Sjiija ∈,][ . 

Let δ be the minimum over all the entries of A  

Let N be the cardinality of S and )(
,min n

ijjin p=δ . 

Let ....21 nn AAAQ = and denote its entries by Sji
n

ijq ∈,
)( ][ . 

Assume without loss of generality that A is with non-zero entries (otherwise 

there exists 0n  such that nA  is with non-zero entries for all 0nn ≥  since it 

is Ergodic). 

Assume without loss of generality that for all n , nA  is with non-zero entries  

(otherwise there exists  0k  such that  nA  is with non-zero entries for all 

0kn ≥ ). 

Now for any stochastic matrix A  with entries Sjiijp ∈,][  and minimum over 

all its entries δ , the following relations are valid: 

Denote the summation over Sj ∈  satisfying vjuj pp ≥  by +
∑  and the 

summation over Sj ∈  satisfying vjuj pp <  by −
∑  for arbitrary states  u  

and  v  in  S . Then .011)()( =−=−∑+−∑
−+

vjujvjuj pppp    …(1) 

And since ,δNpp ujvj ≥∑+∑
−+  then : 

).1(1)( δNpppp vjujvjuj −≤∑−∑−=−∑
+−+         …(2) 

Next, we will use induction on  n  to prove that:  

∏
=

−≤−
n

i
i

n
iji

n
iji Nqq

1

)()( ).1()min(max δ  

                                                           
8 Senata, 1981, p.68 
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This sequence tends to a Markov chain whose transition matrix is: 





















=
010

100

02
1

2
1

A . 

The limit of this sequence is not Ergodic, the second and third states are 

periodic with period ,2  thus n
n Alim does not exist. Moreover, 

nn AAA ...lim 21∞→ does not exist. 

More Examples can be found in [12]7. 
 
Remarks 
(1) If we consider arbitrary transition matrices of arbitrary Markov chains 
and we consider combinations of these chains, then we have all the 
possibilities. We can find combinations of Ergodic chains which are Ergodic, 
other combinations which are not Ergodic. We can find combinations of Non-
Ergodic chains which are Ergodic, other combinations which are not Ergodic. 
We can find combinations of Ergodic chains with Non-Ergodic ones which 
are Ergodic, other combinations which are not Ergodic. Thus, for such a case 
we can reach no conclusion about the limit of the combination.  
 
(2) If we consider a convergent sequence of Markov chains  and if the limit 
of the sequence is not Ergodic, then the limit of the combination  may exist 
and  Ergodic (example 6.2), may exist and not  Ergodic (example 6.4), may 
not exist (example 6.5). 

7. Convergence Theorems (Ergodic Theorems: Limit Theorems) For 
Non-Stationary Markov Chains 

Theorem 7.5 

Assume we have a finite state space. Assume we have a sequence of Markov 
chains such that the limit of this sequence is an Ergodic Markov chain. Then 
the limit of the combination of the elements of this sequence exists and 
Ergodic . 

                                                           
7  Mallak, 1996, p.6 
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sequence is Ergodic. The limit of the sequence has the transition matrix 

,A where: .

............

...)()(

...)()(

...)()(

3
2
12

2
1

2
1

3
2
12

2
1

2
1

3
2
12

2
1

2
1





























=A  

Moreover, 221 AAA =  and ,...21 nn AAAA = thus 

AAAAA nnnn == ∞→∞→ lim...lim 21  which is Ergodic. 

 
Example 6.4:  

Let ∞
=1)( nnA be a sequence of transition matrices of Markov chains, where: 









































=

+−

+−

+−

+−

..................

...)(...)()(

..................

...)(...)()(

...)(...)()(

...)(...)()(

1
2
1

2
11

2
1

2
1

1
2
1

2
11

2
1

2
1

1
2
1

2
11

2
1

2
1

1
2
1

2
11

2
1

2
1

nnn

nnn

nnn

nnn

nA  

For each fixed n , the n-th chain is Ergodic while the limit of the sequence is 

not Ergodic (the sequence tends to the zero matrix). Moreover, 221 AAA =  

and ,...21 nn AAAA = thus nnnn AAAA ∞→∞→ = lim...lim 21 which is not 

Ergodic. 
 
Example 6.5: 

Let ∞
=2)( nnA be a sequence of transition matrices of Markov chains, where: 

.

010

100

01
2
11

2
1



















 +−
=

nn

nA  
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Example 6.2: 

Let ∞
=1)( nnA be a sequence of transition matrices of Markov chains, where: 













−
−

=
nn

nn
nA

11

11

1

1
 This sequence tends to a Markov chain whose 

transition matrix is: 












=
01

10
A . 

The limit of this sequence is not Ergodic, it is periodic with period ,2   thus 
n

n Alim does not exist  while nn AAA ...lim 21∞→ exists and Ergodic. 

Indeed: 

....lim
2
1

2
1

2
1

2
1

21 











=∞→ nn AAA  

Example 6.3: 

Let ∞
=1)( nnA be a sequence of transition matrices of Markov chains, where: 













































=

−

−

−

−

−

.....................

...)(0)(...)(

.....................

...)(0)(...)(

...)(0)(...)(

...)(0)(...)(

...)(0)(...)(

2
11

2
12

2
1

2
1

2
11

2
12

2
1

2
1

2
11

2
12

2
1

2
1

2
11

2
12

2
1

2
1

2
11

2
12

2
1

2
1

nn

nn

nn

nn

nn

nA  

That is, in the n-th chain, the n-th state is isolated, it is not reached from any 
state. For each fixed n, the n-th chain is not Ergodic, while the limit of the 
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







































=

+
−+

+

..................

...000

..................

...000

......00

......00

2

2

2 )1(

1)1(

)1(
1

16
15

16
1

9
8

9
1

4
3

4
1

i

i

i

B  

where i  is the number of the row. A  is a transition matrix of an Ergodic 

Markov chain (since the first column is bounded). B  is a transition matrix of 
a Non-Ergodic  Markov chain, since: 

,1lim 112
1

2

1
2

2 <⇒=∏
=

−
∞→ f

n

k
k

k
n  so the first state is transient. Since the 

chain is irreducible, then all states are transient. 

Now any combination of A and B is irreducible, it is obvious since 

Sjiba ijij ∈∀>⇔> ,,00  and both A and B are irreducible. 

Next, any combination of  A and B such that using A infinitely often is 
non-null persistent; since we use A infinitely often, once we use 

∑ ∑

∞

=

∞

=

∞=≥⇒=
1 1

2
1)(

12
1)(

1 .,
n k

n
i

n
i qqA  So, the first state is non-null 

persistent. The combination is irreducible, so all states are non-null 
persistent. 
Next, any combination of A and B such that using both A and B infinitely 

often is not Ergodic, indeed the limit does not exist. Let 1C  be the class of  

any combination such that in the n-th step we have A and  2C be the class of 

any combination such that in the n-th step we have B , both 1C and 2C have 

probability .2
1  Now, for  ,, 2

1)(
11 =n

iqC for  SiqC n
i ∈∀≤ ,, 4

1)(
12 . Hence 

the limit of any such a combination does not exist.  
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.1P  In two steps, denote it by ,)2(
ijq  then ,)2()1()2(

∑
∈

=
Sk

kjikij ppq where 

Sjiijp ∈,
)1( ][ , denote it by 1P , is the one step transition matrix of the first 

chain and Sjiijp ∈,
)2( ][ , denote it by 2P , is the one step transition matrix of 

the second chain. And in general, for any positive integer n , the n-th  step  

probability  of  the  combination,   ,)()1()(
∑
∈

−=
Sk

n
kj

n
ik

n
ij pqq where )1( −n

ijq  is 

the (n-1)-th step probability of the combination and )(n
ijp is the one step 

probability of the n-th chain, denote its marix by nP . In matrix form 

....21 nn PPPQ =  

We will use the same definition of the original case, the stationary case, for 
irreducible, reducible, periodic, aperiodic, transient, persistent, null persistent 
and Ergodic state (chain). 
The main question will be about Ergodocity of such combinations; that is 

whether the limit of  )(n
ijq  exists or not and the effect of the initial state 

whether it wears off or not for large .n  

 

 

6. Examples Of Non-Stationary Markov Chains 

 
Example 6.1:  
Let A  and B be two transition matrices of two Markov chains, where: 

































=

..................

...000

......00

......00

......00

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

A  

16



Al-Quds University Journal for Research and Studies - No.3 - April 2004

Then jj nV π→)( sa. ; where sa.  stands for almost sure. 

For the proof see [17]6. 

4. Classification of Irreducible, Aperiodic Markov Chains 

For an irreducible, aperiodic Markov chain there exist three possibilities: 

•  The chain is transient, 0lim,, )( =∈∀ ∞→
n

ijn pSji  and 

∑ ∞<
n

n
iip .)(  If the state space is finite, then this case is impossible. 

•  The chain is persistent, there exists no stationary distribution. 

0lim,, )( =∈∀ ∞→
n

ijn pSji  and  

∑ ∞=∞=
n

j
n

iip .,)( µ  This is the null persistent case, if the state spa

is finite this case is impossible. 
•  The chain is Ergodic, there exists a stationary distribution, the 

chain is non-null persistent, 0lim,, )( >=∈∀ ∞→ j
n

ijn pSji π  and  

.,/1 Sjjj ∈∀= πµ  

From the previous classification we conclude that an irreducible, aperio
Markov chain is Ergodic if the state space is finite. 
In the previous sections we tried to give a summary for stationary Mark
chains which is necessary for our work. Actually the theory of Markov cha
is very rich, more details about Markov chains can be found in [1]-[8], [1
[17]. 

5. Introduction to Non-Stationary Markov Chains 

Assume we have different Markov chains with different transition matric
we will consider combinations of the probabilities of these chains. In ot
words, to get the higher probabilities of these combinations, we will u
different transition matrices. 
So, in one step, if we denote the probability of starting from state i  reach

state j  in one step by ,)1(
ijq  then it is the same as the one step transit

probability of the first chain, denote it by ,)1(
ijp  and the transition matrix 

                                                           
6  Taylor and Karlin, 1994, p.157 
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Notice that since ∑
∈

=
Sj

n
ijp ,1)(  the first alternative in theorem 2 is impossible 

if S  is a finite set, that is a finite irreducible Markov chain is persistent.  
The proof of this theorem can be found in [3], [7] and [16]4. 
 

3. Convergence Theorems (Ergodic Theorems: Limit Theorems) For 
Stationary Markov Chains 

 Theorem 3.4 

Suppose of an irreducible, aperiodic Markov chain that there exists a 
stationary distribution, that is a solution of 

∑ ∈
=∈∀=

Si jiji nSjp ,...2,1,,ππ satisfying 0>iπ and 

∑
∈

∈∀=
Si

i Si ,,1π  then the Markov chain is persistent and 

Sjip j
n

ijn ∈∀=∞→ ,,lim )( π . If the state space is finite, then 

,|| )( n
j

n
ij Ap ρπ <− where A is a constant and  ;10 <≤ ρ that is we have 

exponential convergence. 

Remark: The main point of the conclusion is that since )(n
ijp  reaches jπ for 

large n , the effect of the initial state wears off, that is the chain is very 
stable. 

The proof of this well-known theorem can be found in many books, for 
example see [1]-[8],[14]-[17]5. 
By the law of large numbers we can conclude the following corollary: 

Corollary 3.1 

Let ,..., 21 XX be a sequence of random variables which forms an Ergodic 

Markov chain. Let 1)( =nj XI  if jX n = ; 0  otherwise and 

)}.(...)({)( 1
1

njjnj XIXInV ++=  

                                                           
4 For example see Billingisly,1986, p.115 
5 For example see Chen, 1992, p.157  
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•  A state  Si ∈ is called periodic if 1>∃ t  such that 0)( =n
iip  

unless rtn = , otherwise it is called aperiodic. 
•  A Markov chain is called irreducible if n such that 

Sjip n
ii ∈∀> ,,0)( , otherwise it is called reducible. 

•  A Markov chain is called Ergodic if all its states are persistent, 
aperiodic and non-null persistent states; there exists a stationary 

distribution which is a set of probabilities Sjj ∈)(π  satisfying  

∑ ∈
=

Si jiji p .ππ   

Theorem 2.2 

A state  i  is persistent if and only if 1).,( == oiiXp ni  and 

∑ ∞=
n

n
iip .)(  A state i  is transient if and only if 0).,( == oiiXp ni  and 

∑ ∞<
n

n
iip ,)( where ..oi  stands for infinitely often. 

The proof of this theorem can be found in [3], [4], [16] and [17]2. 

Lemma 2.2 

By the zero one law, ).,( oiiXp ni =  is either 0  or 1 . 

For the proof of this lemma see [3]3.  

Theorem 2.3 

If a Markov chain is irreducible, then either all states are transient, 

SjioijXp nji ∈∀== ,,0)).,((U  and  ∑ ∞<
n

n
iip .)(  Or all states are 

persistent,  

SjioijXp nji ∈∀== ,,1)).,((I and ∑ ∞=
n

n
iip .)(  

                                                           
2  For example see Taylor  &Karlin, 1994, p.207 
3  Billingisly,1986, p.114 
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Thus a Markov chain is stationary if it has the same transition matrix in each 
step, otherwise it is non-stationary. 

Theorem 1.1: An Existence Theorem 

Suppose that SjiijpP ∈= ,][ is a stochastic matrix and that si 'π are 

nonnegative numbers satisfying  ∑
∈

=
Si

i 1π . Then there exists on some 

probability space a Markov chain ,...,, 210 XXX with initial probability iπ  

and transition probability ijp . For the proof of this theorem see [3]1.  

Although strictly speaking the Markov chain is the sequence 

,...,, 210 XXX , by this theorem one can say the chain where the matrix P  

together with the initial probability iπ  or even P with some unspecified set 

of iπ . 

2. Classification of Markov Chains  

Let ),,...,,(: 121
)( iXiXiXiXpf nni

n
ii =≠≠≠= − , it means the 

probability of the first visit to the state i  at time n . Let  

))((: 1
1

)( iXpff ni
n

i
n

iiii === ∞
=

∞

=
∑ U , it means the probability of visiting 

the state i infinitely often. Let ∑

∞

=

=
1

)(:
n

n
iii nfµ  it means the expectation of 

visiting the state i  infinitely often, it is called the mean recurrence time. 

Definition 2.5 

•  A state Si ∈  is called persistent if 1=iif , transient if .1<iif  

•  A state Si ∈  is called null persistent if the mean recurrence time  

.∞=iµ  

                                                           
1  Billingisly,1986, p.112 
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what Markov property requires. The initial probabilities 

are ][ 0 iXPi ==π , the si 'π  are nonnegative and add to 1 .  

Definition 1.2   

A square matrix P is called a stochastic matrix if all its entries are non-
negative and the summation of the elements of each row is 1 . It is easy to see 
that stochastic matrices are closed under multiplication. 
Lemma 1.1 
The product of two stochastic matrices is again a stochastic matrix. 
 
Proof 
Let SjiijaA ∈= ,][  and SjiijbB ∈= ,][  be two stochastic matrices. 

Then 1)1)(1( ===∑ ∑∑∑
∈ ∈∈ ∈ Sk Sj

kjik
Sj Sk

kjik baba . 

In particular, if P is a stochastic matrix, then ,...,...,, 32 nPPP are 

stochastic matrices. 

Definition 1.3 

Let SjiijpP ∈= ,][ be a stochastic matrix, then P is called the one step 

transition (probability) matrix of this Markov chain. ijp  means the 

probability of starting from the state i  reaching the state j  (in one step). 

Sjiij
pP ∈= ,

)2(2 ][ is the second step transition matrix. )2(

ij
p  means the 

probability of starting from the state  i  reaching the state j in two steps. For 

any positive integer Sji
nn

ij
pPn ∈= ,

)( ][, is the n-th step transition matrix. 

)(n

ij
p means the probability of starting from  the state i reaching the state j  

in n steps. 

Definition 1.4 

A sequence of random variables 1)( ≥nnX  is called a stationary sequence 

(homogenious or shift invariant) if for each natural numbers k  and n , 

),...,,( 21 nXXX and ),...,,( 21 nkkk XXX +++  have the same distribution.. 

11
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1. Introduction 

Markov chains are stochastic processes which are ways of quantifying the 
dynamic relationships of sequences of random variables. Stochastic models 
play an important role in many areas of the natural and engineering sciences 
[1]-[18]. Indeed if we have a sequence of random variables with values in a 
discrete set, a countable set, then any such a sequence can form a Markov 
chain, which is conditional probabilities relating the elements of this 
sequence. 
The most interesting object of the theory of Markov chains is the asymptotic 
behavior of these probabilities. The most interesting case when we have 
independence of the initial state; that is starting from any state, the particle 
reaches the desired state almost with the same probability. A Markov chain 
satisfying this is called Ergodic. We may characterize Ergodic Markov chains 
by the saying: "All ways lead to Rome". 
Next, we introduce a mathematical introduction. 

Definition 1.1  

Let S be a discrete set, finite or countably infinite. Suppose to each pair 

Sji ∈, there is assigned a nonnegative number ijp  such that these numbers 

satisfy the constraint Sip
Sj ij ∈∀=∑ ∈

,1 . Let  ,...,...,, 10 nXXX be a 

sequence of random variables whose ranges are contained in S . The 
sequence is a Markov chain if: 

npiXjXPiXiXjXP jinnnnnn n
∀======= ++ ,]|[],...|[ 1001

 and every sequence Siii n ⊆},...,{ 10  for which 

0],...[ 00 >== nn iXiXP , this property is called Markov property. S  is 

called the state space or the phase space of the Markov chain. The elements 

of  S  are thought of as the possible states of a system,  nX  representing the 

state at time n . The sequence or process ,...,, 210 XXX then represents the 

history of the system, which evolves in accordance with the probability law 

defined above. The conditional distribution of the next state 1+nX given the 

present state nX must not further depend on the past 10 ,..., −nXX . This is 

10
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h‡‡|K‡�

WK½U−²*« dOž …œËbF*« ·u+—U� qÝöÝ  U¹UN½ w,  U¹dE½

±YOŠ Æ WK½U−²*« dOž …œËbF*« ·u+—U� qÝöÝ  U¹UN½ WÝ«—bÐ Y×³�« «c¼ w, ÂuI½ ≠

d>UMF�« Ác¼ s� VO+dð ÊU, WOJ¹œu+—ô« ·u+—U� qÝöÝ s� WO�U²²� „UM¼ ÊU+ «–« t½√ UM²³Ł√

ÊuJð Ê« W�UŠ w, p�c+ VO+d²�« ÊuJ¹Ë WON²M�  ôU(« WŽuL−� X½U+ «–« wJ¹œu+—« ÊuJ¹

WO�U²²� s� VO+dð W¹UN½ Ê√ UM²³Ł√ UL+ Æ w,U{« ◊dý X% sJ�Ë WON²M� dOž  ôU(« WŽuL−�

 5F� ◊dý X% nOF{ wJ¹œu+—« ÊuJð WOz«uAŽ,V?O+dð W¹UN½ ÊuJð ◊dA�« fH½ X%Ë 

WOJ¹œu+—« w¼ WłËœe*« WOJO²ÝU+u²Ýô« ·u+—U� qÝöÝ s� WO�U²²� s�

≤≠∫WO�U²�« WI¹dD�UÐ Vðd� Y×³�« «c¼ ≠

®¡e'«±®¡e'«≠©¥UNðUHOMBðË ·u+—U� qÝöÝ sŽ W�UŽ …dE½ ≠∫©

®¡e'«µÆWK½U−²*« dOž ·u+—U� qÝöÝ sŽ W�bI� ≠∫©

® ¡e'«∂Æ WK½U−²*« dOž ·u+—U� qÝöÝ sŽ WK¦�√ ≠∫©

® ¡e'«∑ÆWK½U−²*« dOž ·u+—U� qÝöÝ ‰uŠ  U¹dE½ ≠∫©

® ¡e'«∏ÆŸu{u*« ‰uŠ  UEŠö� ≠∫©

≥∫WOÝUÝ√  U×KDB�≠

 ·u+—U� qÝöÝ,w?JO²ÝU+u²Ý«,ÃËœe?� wJO²ÝU+u²Ý«, Í—Ëœ, Í—Ëœ dOž , Í—«d>«,

Í—«d>« dOž,‰UI²½ô« W,uHB�,Æp¹œu+—« W¹dE½ 
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8

Abstract.  In this paper we study the Ergodocity of non-stationary discrete 
time Markov chains. We prove that given a sequence of Ergodic Markov 
chains, then the limit of the combination of the elements of this sequence is 
again Ergodic (under additional condition if the state space is infinite). We 
also prove that the limit of an arbitrary sequence of Markov chains is weak 
Ergodic if it satisfies some condition. Under the same condition, the limit of 
the combination of doubly stochastic sequence of Markov chains is Ergodic.  

Keywords: Markov Chain, Stochastic, Doubly Stochastic, Irreducible, 
Aperiodic, Persistent, Transient, Ergodic, Transition Matrix, Ergodic 
Theorem. 

The paper is organized in the following way. In the first four sections we give 
a general review of the theory of Markov chains: definitions, classifications 
of the chains and main theorems. In section 5 we introduce the concept of 
non-stationary Markov chains. In section 6 we give some examples of non-
stationary Markov chains. In section 7 we give some limit theorems for non-
stationary Markov chains which is our main result. In section 8 we give some 
remarks. 
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