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8. Final Remarks
In this paper, we studied the Ergodocity of al the possibilities of non-
stationary Markov chains on afinite state space S.

In theorem 7.6, we have the condition mini,j pi(j”) =0,2£>0 for

infinitely many n’'s. This condition is essential for our proof. We can restate
this condition in an equivalent form; that is:

There exists a sequence of integers (I; )2, suchthat A ;A ,,...A iswith

non-zero entries and the minimum over all the entries is bounded from below
(for infinitely many i’s).

When the state space S is countable, we gave theorem 7.7 with the condition:
[, USsuchthat Ui [0S, a;, 2 0 = 0, that is one of the columns of the

transition matrix of the limit of the sequence of Markov chainsis uniformly
bounded. This condition is essential for our proof but most probably it can
be weakened.

Non-stationary Markov chains have many applications in the theory of
statistical mechanics [9]-[11], [13]. Therefore, we can apply these results in
further work, in particular in the theory of Gibbs measures and phase
transitions.
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The limit of the combination of the elements of a sequence of doubly
stochastic Markov chains on an infinite state space can not be Ergodic.

Proof

Assume on the contrary that it is Ergodic. Then

lim, . q" =m >0,0i0S=1im, .Y q"”=> 7 =cc

ontradicting the fact that Z Dsq(”’

Corollary 7.5
In theorems (4) and (6), if the limit of the sequence of the transition matrices
Ais stable from the first step; that is:

- n —_ - - _
lim,_, A"=Ali, jOSa =a,.
Then
lim. . Q,=lim __AA..A =lim _A"=lim A=A
Proof

n) — n-1 n n-1 n n

() kasq( ) ()<kasq|( )(a +max |£()|) a +maX |£()|
On the other hand,

— =1 1)

(n) kasq(n ) (n) >kasq|(n )(a —max, |£;£n) )= a; —max, |€|£jn) |

Thus, | gi” —a; |< max, |&{" |- 0 asn - .

Thatis, lim,_,, g{” =1lim M =a,.

n- oo
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In particular, p(”) p(”) ~ a; a, 20" >0. Soif we consider the state

(Jos Jo) then:
G [(X,1,Y5) = (Jo, Jo)i0] =

and by irreducibility of the combination it is correct for any state (i, ,i,)-
Thus if T isthe first time such that X; =Y, =i, then T is finite with
probability 1.

Next,

o [(X,Yy) = (K1), T =m] =

O [(X2Y) # (ig000), t <m, (X, Yin) = (01010, [(X s Yo = (K, D] =

q,[T = m]q(“ m) (n m)
adding out | gives qij[Xn =k, T=m]= g [T = m]q(n m)

adding out K gives g [Y, =1,T =m] = ;[T = m]g{™

takekK =1 and add over m=12,...,n

=q;[X, =k T<n]=q[Y, =k T<n]

inj[xn =k] SQij[xn =k T< n]+qij[T >n] =qij[Yn =k T< n]"'q”'[T >n]
Thus qij[xn =k] < Q; [Y, =k] + Q; [T >n]. (13)

By similar argument we get,

o;[Y, =Kl < o[ X, =k]+q,[T >n]. (19)

Inequalities (13) and (14) =| g - qEE) < q;[T >n]

Since T isfinitewith probability 1=> lim___ |q{" — (”) =0

This means that the combination is independent of the |n|t|al state.
Next, oi” = &, > Osince J, — J > 0.

Thus by irreducibility of the combination, lim___ q{” >0,0kOS.

Hence, the limit of the combination exists and Ergodic (by the same
argument of the finite case, replacing minimum by infimum and maximum
by supremum, the limit isindependent of N).

Corollary 7.4
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. 1 . .

Hence lim iﬁ”) =—,0i,jds
N

Theorem 7.7

Assume we have a sequence of Markov chains on a countable state space S,

whose limit is an Ergodic Markov chain. Assume that [, [0 S such that

HiDSa; 2920, where [&;]; ;sare the entries of the transition

matrix of the limit of the sequence, say A. Then the limit of the combination
of the elements of this sequence exists and Ergodic .

Proof
Let (A,), -, be the transition matrices of this sequence.

Denote the transition matrix of the n-th chain by A, and its entries by
[pi(jn)]i,jDS'
Let lim,_,, A, = A and denoteitsentriesby [a;]; s

Let Q, = AA...A . and denoteits entries by [qi(jn)]i’j[JS'

Denote the entriesof A, A ,...A, by [6"™]; iz

Assume without loss of generality that Ais with non-zero entries and that
A,'S are with non-zero entries (otherwise the same argument of the finite
case).

We will use coupling method to prove this theorem [5]*.

Define a coupled chain on the state space (S,S)with transition

probabilities:
I:)[(xn+17Yn+1) = (k,l) | (Xn7Yn) = (|1 J)] = p(n) (IJ ) kl) = pi(kn) pfln)
Notice that this coupled chain isirreducible (it is with non-zeros).

. (n) (n) (n) (N
Since Py” - &, P70 — & = P’ PyT - & Q.

19 See Chen, 1992, p.6
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combination exists and Ergodic. In fact, lim, q,ﬂ”) ==, 0, j0sS,
where N isthe cardinality of S.

Proof
By the previous theorem we have Weak Ergodocity, so

0jas, q|(1n) = q(”) + E(”) where E(”) Oasnh - o,

Next, stq(n) = st(q(n) g.(.”)) =1.
Thus Ng{™ +>° & =1=q™ +£” =1/N.
Thus Oi, jOS, ¢V =1/N +&".

g™ =3 gPb™ where

[blﬁm) |,jDSaretheent”eSOf [bigm) i,j0s A1+1A\1+2"'An+m'

n+m 1 n m
S _kas(N £ )b
1 n m
< os(max, N7 & )b
< g a2 DT, b

1
=—+max, | |.
N
On the other hand
N . 1
q(n "2 Zsz (min, (W +Ey ))b(m)

> (

—max, | & i(kn) DZsz blgjm)

Z|H

Z||—\

— max, |€i(kn) |

Thus lim_ |q|(m+”) (”) < max |£(”) |> 0Oasn - o,0jOS.
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Thus (R? =) < (1-NJ)(1-NJ,). ...(10)

Where R® = max; ¢\” and r® = min; g{?.

Next, assume that: (R\"™ —r("™) < I_l (1-No). ...(1D

(n-1) (n-1)

Where RI"™ = max; ¢{"Vand r{"™ =min, ¢f"™.

Now we want to prove that it iscorrect for N.

(@5 = a) = 2 0s (A —alIbE™ < 7 (ag) — al)B™ + X7 (qi ~ al)bf"™”
< X0y — 0B —b{"P) < (1-N&,)(B"™ - b"™)

where  [B"V] s ae the enties of  AA..A and

B"™ = max; b{"™ and b{"™® = min, b{"™
J .
Thus (@™ - q) < (1~ NJ)[] - NJ) =[] @~ N9)..
] ]

(9),20) and (12) = (R —r{”) < |‘J (1-NJ). ..(12

Where R = max; o and r” = min, ¢{"” .
Hence, by the principle of mathematical induction, (6) is valid for each
natural number nN.

Next, O, =& >0 infinitely many = I_l (1-NJ,) - Oas n - o,
1=1

Hence, jOS and arbitrary ILkOS, we have
lim, ., 1g” —q” |

That is lim ql(”) is Weak Ergodic; in other words the effect of the initial
state wears off.

Corollary 7.3

In the previous theorem, if the sequence of the transition matrices is doubly
stochastic; that is each matrix is stochastic and satisfies

> P =10/0S adOn=12... Then the limit of the
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Assume without loss of generality that for al N, A, is with non-zero
entries (otherwise there exists K, such that A, is with non-zero entries for
al n=Kk,).

Recall that for any stochastic matrix A with entries [p; ] jos and
minimum over all itsentries O , the following relations are valid:

Denote the summation over j IS satisfying p,; = p, by 2" and the
summation over j [JS satisfying p,; < p, by 2~ for arbitrary states U
and Vin S.

Then 2" (p,—P;) +2X (Py — P,) =1-1=0. ..(7)

andsince 2.° p,; + 2~ P, = NJ, then:

Z+(puj_pvj):1_z_ Py -2 Py S(l_Nd)- ..-(8)

Next, we will useinductionon N to prove that:

(max; ql(n) - min, qi(jn)) = (1 NS,).

For n=1:
max; ; pi(jl) < (1_(N —1)5)and
min,; p¥ <&, = (max; p{® - min, p?) < (1- NJ,)
and since Q, = P, then (max; p{’ —min, p{’) < (1-NJ,).

..(9)
For n=2:

@ -aP) =Y (@8 —a@)p? <7 (0f —a@IM P + X7 (qf) - gi)m(?
where M {2 = max; p{” and m® = min, p{?.

Thus
(o —a) < Z7(af) -l )M P =mi?) < (1-NJ)(1- N3,).
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Thus m(jk") <M[a®+a' +a" +a'] whee M isaconstant.

k1 « 8M(n+l) _  8Mm
(n+1)2}ZO|Z(; m (n+1>zz_;§[a +a'+ a ta ] = (n+)2@-a)  (n+))(1-a)

- 0an- o,
Hence p[|V;(N) -7, P& X, =i] > Oasn > .

Theorem 7.6
Assume we have an arbitrary sequence of Markov chains on a finite state
space S with corresponding transition matrices (A, ), . Denote the entries

A, by [p"] s Assume that min,; p{” =3, 2€>0 for
infinitely many n's. Then lim_ __ AA,...A is Weak Ergodic. That is
0jos, lim, ., 1g” - g |—o Oi,kOS, where [g"]; ;s are the
entriesof Q, = AA...A,. That is, the effect of theinitial state wears off.

Proof

Let (A, )=, be the transition matrices of this sequence.

Denote the transition matrix of the n-th chain by A, and its entries by
[pi(jn)]i,jDS'

Let lim,_. A, = A anddenoteitsentriesby[ay ]; s

Let O be the minimum over all the entriesof A
Let N bethe cardinality of Sand &, = min, ; pi" .

Let Qn = A_lAZA1 and denote its entries by [qi(jn)]i,jgs-

Assume without loss of generality that Ais with non-zero entries (otherwise
there exists N, suchthat A" iswith non-zero entriesfor al N = n, since
itis Ergodic).

25
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the combination of this sequence. Then: P[|V;(N) -7, €] - 0 as
n - oo, e>0.

Proof
Let X,, X;,...; X, ,... be the random variables which form these Markov

chains (the values of them arein S).
Let I, (X,) =1t X,=1; Ootherwise. Then

Vi(n) =3{1; (X)) +..+ 1 (X))}
Let qi(j”) be the n-th step probability of the combination.

Let i, ] betwo statesin S.
We want to provethat p[|V;(n) =72, > €] - Oasn - o, [e >0.

Noticethat EV/ (n) = n+1Zq,(m) which tendsto 72, asntendsto .

By Chebyshev’slnequallty.
pIIV;(n) -7 > e X, =i] <

Thus we have to prove that E[(V, (n)—i'[j)2 | X, =1] - Oasn - o,

ELV, (M) = 75)7 1 X, =11 = A ELY (1 (X,) =77 X, =0
(n+1)2 ii mgk“

k=0 1=0

E[(V; (n)-17;)?|X,=i]
= ..

where
mi = EL(H (X (X)) [ X =11 = EL (X)) | X =11 = mEL(X,) | X, =i] + 777
=q g —ma —mq) +7m;
where s = min(k,1),t =k =1 .

i(jt) stands for the probability of the combination from S+1 to
max(k, 1) .

Butwehave of” = 77, + £, | " < Ca".

24
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Hence, by the principle of mathematical induction, (6) is valid for each
natural number N.

1=1

So if R? — 7TT;then r" - T indeed:
"~ | (R ~r") <Ca’

where C is constant and O<a <10, |,kOS That is
|o™ — 77, < Ca",0i, j OS

Notes:
(1) If A has zero entries, then there exists N, such that A'is

with non-zero entries for each N =N, so there exists | such
that AA,...A is with non-zero entries, so we may consider

AA,...A, andtakethelimitas K — oo.

(2) The limit of the combination does not depend on N, that is the
limit exists. If we have the same transition matrix in each step,

then RE”) is non-increasing (with respect to N) and rJﬁ”’ is

non-decreasing (See for example [3]%). If we do not have the
same transition matrix, then they are almost monotonic (since
we have a convergent sequence of transition matrices).

Corollary 7.2
Assume we have a sequence of Markov chains on a finite state space S.
Assume that the limit of this sequence is Ergodic. Let V;(n) be the average

number of staying in state ] . Let (72;) .5 be the stationary distribution of

° Billingisly,1986, p.128
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For n=1.:
max; ; p{” < (1-(N -1)9,) and
min, ; pi¥ <8, = (max; p{’ —min, p{V) < (1- Ng,)
and since Q, = P, then (max; p{’ —min; p{”) < (1-Ng,).

..(3
For n=2:

(@ -a7) = X, (@ ~a)p? < T(q ~aIM? + (6% - a)mf?

where I\/I (2 = = max, pl(2) and m(2) — mm p(z)_
Thus
(q(z) _ q\(,JZ)) <>* (q(l) (1))(M (2) _ m(2)) < (1 NO. )(1 NO. )

Thus (R? —r{?) < (1-NJ)(1-NJ,). ...
Where R® = max; ¢\” and r® = min, q(z).

Next, assume that: (R}”_l) - rj(”‘l)) < I_l (1-NJ)).

(n-1) (n-1)

Where R™™ = max; g and r{"™ =min, g{"™ .

Now we want to provethat it is correct for nN.

@ -af) =, (@ —a@)u™ <X (af —a%)B" + X7 (a - ai)b"
<37 (o - o )(BI"™ ~b{") < (1~ N&)(B{™ ~bf"™)

where  [b{"V] s ae the entries of  AA..Aad

B("™Y = max, b(”‘l) and b(”‘l) = min, b(.”‘l)
J .

Thus (g™ —qi”) < (1~ N5)|‘|(1 NJ)—|‘|(1 NJ)..

(3@ and (5) = (R™ —r) < I_| (1-NJ). ..(6)

Where R™ = max; of" and r” = min; " .

22
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Remark: This theorem is proved algebraicaly, see for example [15]°. In this
paper we introduce an analytical proof of thistheorem.

Proof

Let (A,), -, be the transition matrices of this sequence. Denote the transition
matrix of the n-th chainby A, and itsentriesby [ pi(j”)]i’jDS.

Let lim ., A, = A anddenoteitsentriesby[a; ]; ;s

Let O be the minimum over all the entriesof A

Let N bethe cardinality of Sand J, = min; ; p{"..

Let Q, = AA,...A, . and denoteits entries by [qi(jn)]i’jgs-

Assume without loss of generality that Ais with non-zero entries (otherwise
there exists N, suchthat A" iswith non-zero entries for al N = N, sinceit
is Ergodic).

Assume without loss of generality that for all N, A, iswith non-zero entries

(otherwise there exists K, such that A, is with non-zero entries for all
n=k,).
Now for any stochastic matrix A with entries [ p;; ]; ;55 and minimum over

al itsentries J , the following relations are valid:
Denote the summation over | [1S satisfying Py = Py by > and the

summation over j (1S satisfying p,; < p,; by 2.~ for arbitrary states U
and Vin S.Then X" (p,—p,;)+2 (P, —p,;)=1-1=0. ..(1)
Andsince 2. p, +2° p,; = NJ, then:

2 (py=py) =1-2X"p; ~X7 p; <(1-NJ).  ..(2

Next, we will useinductionon N to prove that:

(max, Qi('n) - min, qi(jn)) = I_l (1-No9).
1=1

J

8 Senata, 1981, p.68
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This sequence tends to a Markov chain whose transition matrix is:

A=

o O wnk
P O~k
o r O

The limit of this sequence is not Ergodic, the second and third states are
periodic with period 2, thus lim_  A"does not exist. Moreover,

lim, . AA,...A, doesnot exist.
More Examples can be found in [12]”.

Remarks

(1) If we consider arbitrary transition matrices of arbitrary Markov chains
and we consider combinations of these chains, then we have al the
possibilities. We can find combinations of Ergodic chains which are Ergodic,
other combinations which are not Ergodic. We can find combinations of Non-
Ergodic chains which are Ergodic, other combinations which are not Ergodic.
We can find combinations of Ergodic chains with Non-Ergodic ones which
are Ergodic, other combinations which are not Ergodic. Thus, for such a case
we can reach no conclusion about the limit of the combination.

(2) If we consider a convergent sequence of Markov chains and if the limit
of the sequence is not Ergodic, then the limit of the combination may exist
and Ergodic (example 6.2), may exist and not Ergodic (example 6.4), may
not exist (example 6.5).

7. Convergence Theorems (Ergodic Theorems: Limit Theorems) For
Non-Stationary Markov Chains

Theorem 7.5

Assume we have afinite state space. Assume we have a sequence of Markov
chains such that the limit of this sequence is an Ergodic Markov chain. Then
the limit of the combination of the elements of this sequence exists and
Ergodic .

" Mallak, 1996, p.6
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sequence is Ergodic. The limit of the sequence has the transition matrix
@ G
3 G

A where A= 2 13
) )

N N N

Moreover, AA =A, and AA,..A = A, thus
lim, . AA..A =lim___ A = A whichisErgodic.

Example 6.4:
Let (A,) = be asequence of transition matrices of Markov chains, where:

@ e .2 e
N A

" @ ™

(%) n+l

N f

@ @

For eac_h fixed N, the n-th chain is Ergodic wi;ile the limit of the sequenceis
not Ergodic (the sequence tends to the zero matrix). Moreover, A A, = A,

and AA,..A =A, thuslim __ AA,..A =lim __ A whichisnot

Ergodic.

Example 6.5:
Let (A,),-,be asequence of transition matrices of Markov chains, where:

11 141
2 n 2+n O

0 1.

A=l 0
0O 1 0

19
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Example 6.2:
Let (A,),= be a sequence of transition matrices of Markov chains, where:
1 -1
A, :L_” ) L ”} This sequence tends to a Markov chain whose
n n

1 0|
The limit of this sequence is not Ergodic, it is periodic with period 2, thus

lim_  A"does not exist while lim __ AA,..A exists and Ergodic.
I ndeed:

transition matrix is; A=

11
|m%ma&mﬁzk i.
Example 6.3:
Let (A,),= be a sequence of transition matrices of Markov chains, where:
3B - @ 0@
3 @ @70 @R
3 @ @0 @R
A=l B . @7 0 @)
PR R C) A U O

That is, in the n-th chain, the n-th state is isolated, it is not reached from any
state. For each fixed n, the n-th chain is not Ergodic, while the limit of the

18
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i 400
1020
a_| & 00 % o0

1 O 0 O (i+l)2—l

(1+i)? (i+1)?

where | is the number of the row. A is a transition matrix of an Ergodic

Markov chain (since the first column is bounded). B isatransition matrix of
aNon-Ergodic Markov chain, since:

n
lim, ., D% =1= f, <1 sothe first state is transient. Since the
chainisirreducible, then all states are transient.
Now any combination of Aand Bis irreducible, it is obvious since
g, >0 - b,j >0,0i, j S andboth Aand B areirreducible.

Next, any combination of Aand B such that using Ainfinitely often is
non-null persistent; since we use Ainfinitely often, once we use

AqP =1i= Zqi(ln) > Z% =o0. So, the first state is non-null
k=1

n=1
persistent. The combination is irreducible, so all states are non-null
persistent.
Next, any combination of Aand B such that using both Aand B infinitely

often is not Ergodic, indeed the limit does not exist. Let C; be the class of
any combination such that in the n-th step we have Aand C, be the class of
any combination such that in the n-th step we have B, both C,and C, have
probability <. Now, for C,,q{" =1,for C,,qy" <1,0iJS. Hence
the limit of any such a combination does not exist.

17
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P. In two steps, denote it by ql(z)’ then ql(z) —Zpl(l) () where
kOS

[pi(jl)]i'jDS, denote it by P,, is the one step transition matrix of the first

chain and [pi(jz)]i,jms, denote it by P,, is the one step transition matrix of
the second chain. And in general, for any positive integer N, the n-th step

probability of the combination, " = Zq,(” - IEJ”),Where g is
ks

the (n-1)-th step probability of the combination and pi(j”) is the one step

probability of the n-th chain, denote its marix by P,. In matrix form
Q,=PRPR..P.

We will use the same definition of the original case, the stationary case, for
irreducible, reducible, periodic, aperiodic, transient, persistent, null persistent

and Ergodic state (chain).
The main question will be about Ergodocity of such combinations; that is

whether the limit of q( ) exists or not and the effect of the initial state
whether it wears off or not for large N.

6. Examples Of Non-Stationary Markov Chains

Example 6.1:

Let A and B betwo transition matrices of two Markov chains, where:
+ + 0O
£ 0 3 0

A=l1 0 0 3
s 0 0 0 2

16
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Then Vj (n) - 71; a.S; where a.S stands for almost sure.
For the proof see[17]°.

4. Classification of Irreducible, Aperiodic Markov Chains
For an irreducible, aperiodic Markov chain there exist three possibilities:
. The chain is transient, i, jOS,lim (M =0 and

n-oc Mjj

Z pi(in) < o0, If the state space isfinite, then this case isimpossible.
n

. The chain is persistent, there exists no stationary distribution.
Oi, jOSlim, ., p{” =0 and

Z pi(i") =00, l; =00, Thisis the null persistent case, if the state sp
n

isfinite this caseisimpossible.
J The chain is Ergodic, there exists a stationary distribution, the

chain is non-null persistent, Ui, jOS,lim__ pi(j”) =TI, >0 and
Y, =4n,0pas.

From the previous classification we conclude that an irreducible, aperic
Markov chain is Ergodic if the state spaceisfinite.

In the previous sections we tried to give a summary for stationary Marl
chains which is necessary for our work. Actually the theory of Markov che
is very rich, more details about Markov chains can be found in [1]-[8], [1

[17].

5. Introduction to Non-Stationary Markov Chains

Assume we have different Markov chains with different transition matric
we will consider combinations of the probabilities of these chains. In ot
words, to get the higher probabilities of these combinations, we will
different transition matrices.

So, in one step, if we denote the probability of starting from state | reach
@)

state | in one step by Q; ", then it is the same as the one step transit

O]

probability of the first chain, denote it by By~ and the transition matrix

® Taylor and Karlin, 1994, p.157
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Notice that since Z pi(j”) =1, thefirst alternative in theorem 2 isimpossible
ios

if S isafiniteset, that isafiniteirreducible Markov chain is persistent.

The proof of this theorem can be found in [3], [7] and [16]*.

3. Convergence Theorems (Ergodic Theorems: Limit Theorems) For
Stationary Markov Chains

Theorem 3.4

Suppose of an irreducible, aperiodic Markov chain that there exists a
stationary distribution, that is a solution of
D 7hP; =, 0 0S,n=12,... satisfying 71 > 0and

Zﬂi =1,0i [0S, then the Markov chain is persistent and
ias
lim, ., p{" =700, jOS. If the state space is finite, then

| pi(j”) — 71, |< Ap", where Aisaconstantand 0< p <1 that iswe have
exponential convergence.

Remark: The main point of the conclusion is that since pign)

large N, the effect of the initial state wears off, that is the chain is very
stable.

The proof of this well-known theorem can be found in many books, for
example see [1]-[8],[14]-[17]".

By the law of large numbers we can conclude the following corollary:

reaches 71 j for

Corollary 3.1
Let X;, X,,... beasequence of random variables which forms an Ergodic
Markov chain. Let | (X,) =1if X = j; O otherwiseand

V() = H1 (X)) ot 1 (X))

* For example see Billingisly,1986, p.115
® For example see Chen, 1992, p.157
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- A sate i0Sis caled periodic if [ >1 such that p{™ =0

unless N =t , otherwiseit is called aperiodic.

. A Markov chain is caled irreducible if n such that
(" >0,0i, jOS, otherwise it is called reducible.

. A Markov chain is caled Ergodic if all its states are persistent,
aperiodic and non-null persistent states; there exists a stationary

distribution which is a set of probabiliies (71;),, satisfying
Zimsﬂi piJ' = ﬂJ

Theorem 2.2

A date | is persstent if and only if p (X, =1i,i.0)=1 and
> p{” =co. Astate i istransient if and only if p;(X, =i,i.0) =0 and
n

Z p{” < oo, where i.0. stands for infinitely often.
n
The proof of this theorem can be found in [3], [4], [16] and [17]%

Lemma 2.2

By the zero onelaw, P, (X, =1,1.0) iseither O or 1.
For the proof of thislemma see[3]°.

Theorem 2.3
If a Markov chain is irreducible, then either al states are transient,

p.(U;(X,=j,i0)=00i,j0S ad Zpi(i”) <o, Or al states are

persistent,

p.(N, (X, = },i0) =L0i, j OSand ¥ p” = o,

2 For example see Taylor &Karlin, 1994, p.207
® Billingisly,1986, p.114
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Thus a Markov chain is stationary if it has the same transition matrix in each
step, otherwise it is non-stationary.

Theorem 1.1: An Existence Theorem

Suppose that P =[p;]; ;sis a stochastic matrix and that 77,'Sare

nonnegative numbers satisfying Zﬂi =1. Then there exists on some
i0s

probability space aMarkov chain X, X, X,,... with initial probability 7z

and transition probability P - For the proof of this theorem see [3]*.

Although strictly speaking the Markov chan is the sequence

Xos X4, X,,..., by this theorem one can say the chain where the matrix P

together with the initial probability 72 or even P with some unspecified set

of 7.

2. Classification of Markov Chains
Let f™:=p (X, Zi,X,#i,., X, #i,X =i), it means the
probability of the first visit to the stae | a time N. Let

f. = Z £ =p (U2, (X, =1i)), it means the probability of visiting

n=1

the state | infinitely often. Let 4 = an“(”) it means the expectation of
n=1

visiting the state | infinitely often, it is called the mean recurrence time.

Definition 2.5

« AdaeiUS iscaledpersistentif f, =1, transientif f. <1,

. A state 1 IS is called null persistent if the mean recurrence time

M = .

! Billingisly,1986, p.112
12
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what  Markov  property  requires.  The initia probabilities
areq;, = P[ X, =i],the 71" S are nonnegative and add to 1.

Definition 1.2

A square matrix P is called a stochastic matrix if al its entries are non-

negative and the summation of the elements of each row is 1. It is easy to see
that stochastic matrices are closed under multiplication.

Lemmal.l

The product of two stochastic matricesis again a stochastic matrix.

Proof
Let A=[a;]; j5s and B =[b;]; ;15 betwo stochastic matrices.
Then > > a,b, => a, > b, =)D =1.

jOSK S kIS [S

In particular, if Pis a sochastic matrix, then P?,P3,... P",..are
stochastic matrices.

Definition 1.3

Let P =[p,;]; osbe a stochastic matrix, then P is called the one step
transition (probability) matrix of this Markov chain. P means the
probability of starting from the state | reaching the state | (in one step).
P’ =[pi(jz)]i’jmsis the second step transition matrix. pi(jz) means the

probability of starting from the state | reaching the state j in two steps. For
(n)]
ij

pi(j”) means the probability of starting from the state i reaching the state |

any positive integer N,P" =[p i jos IS the n-th step transition matrix.

in n steps.

Definition 1.4
A sequence of random variables (X)), is caled a stationary sequence

(homogenious or shift invariant) if for each natural numbers K and n,
(X Xy, X)) and (Xyyyy Xyipseens Xisy) have the same distribution..

11
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1. Introduction

Markov chains are stochastic processes which are ways of quantifying the
dynamic relationships of sequences of random variables. Stochastic models
play an important role in many areas of the natural and engineering sciences
[1]-[18]. Indeed if we have a sequence of random variables with valuesin a
discrete set, a countable set, then any such a sequence can form a Markov
chain, which is conditional probabilities relating the elements of this
sequence.

The most interesting object of the theory of Markov chains is the asymptotic
behavior of these probabilities. The most interesting case when we have
independence of the initial state; that is starting from any state, the particle
reaches the desired state aimost with the same probability. A Markov chain
satisfying thisis called Ergodic. We may characterize Ergodic Markov chains
by the saying: "All ways lead to Rome".

Next, we introduce a mathematical introduction.

Definition 1.1
Let S be a discrete set, finite or countably infinite. Suppose to each pair
I, ] [] Sthereis assigned a nonnegative number [; such that these numbers

satisfy the constraint ijs o =10 0S. Let X, X,y X,y be @

sequence of random variables whose ranges are contained in S. The
sequence isaMarkov chainif:

PIX o = 11 Xg =hgp Xy =i ] = PIX oy = T X, =i,]1=p; ;.00
and every sequence {ig,ip,..1,} O0S for which
P[X, =ig,... X, =1,] >0, this property is called Markov property. S is
called the state space or the phase space of the Markov chain. The elements
of S arethought of asthe possible states of asystem, X, representing the

state at timeN . The sequence or process X,, X;, X,,... then represents the

history of the system, which evolves in accordance with the probability law
defined above. The conditional distribution of the next state X, given the

present state X  must not further depend on the past X,,,..., X, _; . This is

10
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Abstract

In this paper we study the Ergodocity of non-stationary discrete
time Markov chains. We prove that given a sequence of Ergodic Markov
chains, then the limit of the combination of the elements of this sequence is
again Ergodic (under additional condition if the state space is infinite). We
also prove that the limit of an arbitrary sequence of Markov chains is weak
Ergodic if it satisfies some condition. Under the same condition, the limit of
the combination of doubly stochastic sequence of Markov chainsis Ergodic.

Keywords: Markov Chain, Stochastic, Doubly Stochastic, Irreducible,
Aperiodic, Persistent, Transient, Ergodic, Transition Matrix, Ergodic
Theorem.

The paper is organized in the following way. In the first four sections we give
a general review of the theory of Markov chains: definitions, classifications
of the chains and main theorems. In section 5 we introduce the concept of
non-stationary Markov chains. In section 6 we give some examples of non-
stationary Markov chains. In section 7 we give some limit theorems for non-
stationary Markov chains which is our main result. In section 8 we give some
remarks.
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